دورية أكاديمية

Nucleocapsid-specific antibody function is associated with therapeutic benefits from COVID-19 convalescent plasma therapy.

التفاصيل البيبلوغرافية
العنوان: Nucleocapsid-specific antibody function is associated with therapeutic benefits from COVID-19 convalescent plasma therapy.
المؤلفون: Herman JD; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA., Wang C; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA., Burke JS; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA., Zur Y; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA., Compere H; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA., Kang J; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA., Macvicar R; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA., Taylor S; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA., Shin S; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA., Frank I; Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA., Siegel D; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA., Tebas P; Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA., Choi GH; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA., Shaw PA; Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA., Yoon H; Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA., Pirofski LA; Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA., Julg BD; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA., Bar KJ; Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address: bark@pennmedicine.upenn.edu., Lauffenburger D; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address: lauffen@mit.edu., Alter G; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA. Electronic address: galter@mgh.harvard.edu.
المصدر: Cell reports. Medicine [Cell Rep Med] 2022 Nov 15; Vol. 3 (11), pp. 100811. Date of Electronic Publication: 2022 Oct 24.
نوع المنشور: Randomized Controlled Trial; Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Cell Press Country of Publication: United States NLM ID: 101766894 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2666-3791 (Electronic) Linking ISSN: 26663791 NLM ISO Abbreviation: Cell Rep Med Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Cambridge, MA] : Cell Press, [2020]-
مواضيع طبية MeSH: COVID-19*/therapy, Humans ; SARS-CoV-2 ; Immunization, Passive/methods ; Antibodies, Viral/therapeutic use ; Nucleocapsid ; COVID-19 Serotherapy
مستخلص: Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP), a passive polyclonal antibody therapeutic agent, has had mixed clinical results. Although antibody neutralization is the predominant approach to benchmarking CCP efficacy, CCP may also influence the evolution of the endogenous antibody response. Using systems serology to comprehensively profile severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) functional antibodies of hospitalized people with COVID-19 enrolled in a randomized controlled trial of CCP (ClinicalTrials.gov: NCT04397757), we find that the clinical benefits of CCP are associated with a shift toward reduced inflammatory Spike (S) responses and enhanced nucleocapsid (N) humoral responses. We find that CCP has the greatest clinical benefit in participants with low pre-existing anti-SARS-CoV-2 antibody function and that CCP-induced immunomodulatory Fc glycan profiles and N immunodominant profiles persist for at least 2 months. We highlight a potential mechanism of action of CCP associated with durable immunomodulation, outline optimal patient characteristics for CCP treatment, and provide guidance for development of a different class of COVID-19 hyperinflammation-targeting antibody therapeutic agents.
Competing Interests: Declaration of interests G.A. is a founder of SeromYx Systems, Inc., an equity holder in Leyden Labs, and a member of the scientific advisory board of Sanofi Pasteur.
(Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
References: Eur Respir J. 2020 Aug 27;56(2):. (PMID: 32398307)
EClinicalMedicine. 2021 Jun;36:100926. (PMID: 34109306)
J Immunol Methods. 2017 Apr;443:33-44. (PMID: 28163018)
Nat Commun. 2021 Nov 25;12(1):6853. (PMID: 34824251)
Lancet Infect Dis. 2020 May;20(5):533-534. (PMID: 32087114)
Nat Med. 2012 Sep;18(9):1401-6. (PMID: 22922409)
Front Immunol. 2021 Jul 05;12:679973. (PMID: 34290702)
mBio. 2021 Apr 20;12(2):. (PMID: 33879585)
J Clin Invest. 2021 Oct 15;131(20):. (PMID: 34473652)
Sci Transl Med. 2021 Jun 2;13(596):. (PMID: 33979301)
MAbs. 2014 Jul-Aug;6(4):915-27. (PMID: 24927273)
JAMA. 2021 Nov 02;326(17):1690-1702. (PMID: 34606578)
Nat Med. 2018 Oct;24(10):1590-1598. (PMID: 30177821)
Nature. 2022 Feb;602(7898):664-670. (PMID: 35016195)
Am J Pathol. 2021 Jan;191(1):90-107. (PMID: 33157066)
JCI Insight. 2021 Feb 22;6(4):. (PMID: 33476300)
Sci Immunol. 2018 Aug 17;3(26):. (PMID: 30120121)
Cell. 2021 Jan 21;184(2):476-488.e11. (PMID: 33412089)
Nat Med. 2021 Mar;27(3):454-462. (PMID: 33589825)
Cell. 2020 Dec 10;183(6):1508-1519.e12. (PMID: 33207184)
N Engl J Med. 2022 Feb 10;386(6):509-520. (PMID: 34914868)
Nat Commun. 2021 May 11;12(1):2697. (PMID: 33976229)
Nature. 2022 Feb;602(7898):671-675. (PMID: 35016199)
Clin Exp Immunol. 2017 Jan;187(1):64-70. (PMID: 27314456)
Cell Mol Immunol. 2020 Jul;17(7):773-775. (PMID: 32467617)
J Clin Invest. 2021 Dec 15;131(24):. (PMID: 34788233)
N Engl J Med. 2021 Mar 18;384(11):1015-1027. (PMID: 33523609)
J Immunol Methods. 2011 Mar 7;366(1-2):8-19. (PMID: 21192942)
Sci Immunol. 2021 May 13;6(59):. (PMID: 34446527)
Hum Vaccin Immunother. 2022 Apr 29;18(2):1940652. (PMID: 34228597)
Trends Immunol. 2017 May;38(5):358-372. (PMID: 28385520)
EBioMedicine. 2022 Oct;84:104270. (PMID: 36130476)
N Engl J Med. 2022 Feb 10;386(6):599-601. (PMID: 35030645)
Annu Rev Immunol. 2007;25:21-50. (PMID: 17029568)
J Infect Dis. 2015 Jan 1;211(1):115-24. (PMID: 25015948)
Nature. 2020 Dec;588(7838):485-490. (PMID: 33032297)
J Clin Invest. 2020 Apr 1;130(4):1545-1548. (PMID: 32167489)
J Immunol Methods. 2004 Nov;294(1-2):15-22. (PMID: 15604012)
N Engl J Med. 2021 Jan 21;384(3):238-251. (PMID: 33332778)
Nat Rev Immunol. 2003 May;3(5):413-25. (PMID: 12766763)
J Immunol. 2021 Jan 1;206(1):109-117. (PMID: 33208457)
Nature. 2022 Feb;602(7898):657-663. (PMID: 35016194)
Nat Commun. 2021 Aug 11;12(1):4864. (PMID: 34381030)
Nature. 2011 Jun 19;475(7354):110-3. (PMID: 21685887)
Science. 2021 Feb 26;371(6532):. (PMID: 33361116)
J Immunol Methods. 2015 Feb;417:34-44. (PMID: 25523925)
Nat Med. 2021 Nov;27(11):2012-2024. (PMID: 34504336)
Science. 2008 Apr 18;320(5874):373-6. (PMID: 18420934)
Pharmacotherapy. 2006 Jun;26(6):813-27. (PMID: 16716135)
Curr Opin Immunol. 2008 Aug;20(4):471-8. (PMID: 18606225)
Clin Infect Dis. 2020 Dec 17;71(10):2688-2694. (PMID: 32497196)
Stat Med. 2016 Aug 30;35(19):3413-23. (PMID: 27059817)
J Immunol Methods. 2019 Aug;471:46-56. (PMID: 31132351)
Cell. 2016 Oct 6;167(2):433-443.e14. (PMID: 27667685)
J Med Virol. 2021 Sep;93(9):5409-5415. (PMID: 33932299)
Science. 2006 Aug 4;313(5787):670-3. (PMID: 16888140)
Proc Natl Acad Sci U S A. 2015 May 5;112(18):E2385-94. (PMID: 25870292)
Natl Sci Rev. 2020 Jun;7(6):998-1002. (PMID: 34676125)
J Clin Invest. 2021 Jul 1;131(13):. (PMID: 33974559)
Sci Adv. 2021 Jul 30;7(31):. (PMID: 34330709)
J Clin Invest. 2021 Apr 1;131(7):. (PMID: 33571169)
N Engl J Med. 2021 Feb 18;384(7):610-618. (PMID: 33406353)
Cell. 2015 Nov 5;163(4):988-98. (PMID: 26544943)
Nat Immunol. 2021 Jan;22(1):67-73. (PMID: 33169014)
J Immunol Methods. 2019 Oct;473:112630. (PMID: 31301278)
معلومات مُعتمدة: UM1 AI069534 United States AI NIAID NIH HHS; R01 AI042790 United States AI NIAID NIH HHS; R01 AI146785 United States AI NIAID NIH HHS; P30 AI045008 United States AI NIAID NIH HHS; R01 AI143453 United States AI NIAID NIH HHS; UL1 TR002556 United States TR NCATS NIH HHS; U19 AI135995 United States AI NIAID NIH HHS; INV-001650 United States GATES Bill & Melinda Gates Foundation; T32 AI007061 United States AI NIAID NIH HHS; U01 CA260476 United States CA NCI NIH HHS; R37 AI080289 United States AI NIAID NIH HHS; 75N93019C00052 United States AI NIAID NIH HHS; P30 AI060354 United States AI NIAID NIH HHS
فهرسة مساهمة: Keywords: COVID immunomodulation; COVID-19; Fc effector functions; SARS-CoV-2; antibody Fc glycosylation; convalescent plasma; functional antibodies; immunodominance shift; nucleocapsid; systems serology
سلسلة جزيئية: ClinicalTrials.gov NCT04397757
المشرفين على المادة: 0 (Antibodies, Viral)
تواريخ الأحداث: Date Created: 20221109 Date Completed: 20221121 Latest Revision: 20231106
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9595358
DOI: 10.1016/j.xcrm.2022.100811
PMID: 36351430
قاعدة البيانات: MEDLINE
الوصف
تدمد:2666-3791
DOI:10.1016/j.xcrm.2022.100811