دورية أكاديمية

Exploration of a library of piperonylic acid-derived hydrazones possessing variable aryl functionalities as potent dual cholinesterase and monoamine oxidase inhibitors.

التفاصيل البيبلوغرافية
العنوان: Exploration of a library of piperonylic acid-derived hydrazones possessing variable aryl functionalities as potent dual cholinesterase and monoamine oxidase inhibitors.
المؤلفون: Kumar VP; Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India., Vishnu MS; Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India., Kumar S; Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India., Jaiswal S; Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India., Ayyannan SR; Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India. asraja.phe@iitbhu.ac.in.
المصدر: Molecular diversity [Mol Divers] 2023 Dec; Vol. 27 (6), pp. 2465-2489. Date of Electronic Publication: 2022 Nov 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: ESCOM Science Publishers Country of Publication: Netherlands NLM ID: 9516534 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-501X (Electronic) Linking ISSN: 13811991 NLM ISO Abbreviation: Mol Divers Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Leiden, The Netherlands : ESCOM Science Publishers, c1995-
مواضيع طبية MeSH: Monoamine Oxidase Inhibitors*/pharmacology , Monoamine Oxidase Inhibitors*/chemistry , Cholinesterases*/metabolism, Molecular Docking Simulation ; Hydrazones/pharmacology ; Hydrazones/chemistry ; Kinetics ; Cholinesterase Inhibitors/chemistry ; Monoamine Oxidase/chemistry ; Structure-Activity Relationship ; Acetylcholinesterase/metabolism
مستخلص: A library of piperonylic acid-derived hydrazones possessing variable aryl moiety was synthesized and investigated for their multifunctional properties against cholinesterases (ChEs) and monoamine oxidases (MAOs). The in vitro enzymatic assay results revealed that the tested hydrazones have exhibited excellent cholinesterase inhibition profile. Compound 4i, (E)-N'-(2,3-dichlorobenzylidene)benzo[d][1,3]dioxole-5-carbohydrazide showed promising dual inhibitory profile against AChE (0.048 ± 0.007 μM), BChE (0.89 ± 0.018 μM), and MAO-B (0.95 ± 0.12 μM) enzymes. SAR exploration revealed that the truncation of the linker connecting both the aryl binding sites of the semicarbazone scaffold, by one atom, has relatively suppressed the AChE inhibitory potential. Kinetic studies disclosed that the compound 4i reversibly inhibited AChE enzyme in a competitive manner (K i  = 8.0 ± 0.076 nM), while it displayed a non-competitive and reversible inhibition profile against MAO-B (K i  = 9.6 ± 0.021 µM). Moreover, molecular docking studies of synthesized compounds against ChEs and MAOs provided the crucial molecular features that enable their close association and interaction with the target enzymes. All atomistic simulation studies confirmed the stable association of compound 4i within the active sites of AChE and MAO-B. In addition, theoretical ADMET prediction studies demonstrated the acceptable pharmacokinetic profile of the dual inhibitors. In summary, the attempted lead simplification study afforded a potent dual ChE-MAO-B inhibitor compound that merits further investigation.
(© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Walczak-Nowicka ŁJ, Herbet M (2021) Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms22179290. (PMID: 10.3390/ijms22179290345021988430571)
Singh J, Kour K, Jayaram MB (2012) Acetylcholinesterase inhibitors for schizophrenia. Cochrane Database Syst Rev 1(1):CD007967. (PMID: 22258978)
Massoulie J et al (1993) Chapter 15: Structure and functions of acetylcholinesterase and butyrylcholinesterase. In: Cuello AC (ed) Progress in brain research. Elsevier, Amsterdam, pp 139–146.
Girard E et al (2007) Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Life Sci 80(24–25):2380–2385. https://doi.org/10.1016/j.lfs.2007.03.011. (PMID: 10.1016/j.lfs.2007.03.01117467011)
Dvir H et al (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187(1):10–22. https://doi.org/10.1016/j.cbi.2010.01.042. (PMID: 10.1016/j.cbi.2010.01.042201380302894301)
Muller T, Riederer P, Grünblatt E (2017) Determination of monoamine oxidase A and B activity in long-term treated patients with Parkinson disease. Clin Neuropharmacol. https://doi.org/10.1097/WNF.0000000000000233. (PMID: 10.1097/WNF.000000000000023328682929)
Tripathi RKP, Ayyannan SR (2019) Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: an overview and update. Med Res Rev 39(5):1603–1706. https://doi.org/10.1002/med.21561. (PMID: 10.1002/med.2156130604512)
Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39(1):73–82. https://doi.org/10.1080/01616412.2016.1251711. (PMID: 10.1080/01616412.2016.125171127809706)
Fisar Z (2016) Drugs related to monoamine oxidase activity. Prog Neuropsychopharmacol Biol Psychiatry 69:112–124. https://doi.org/10.1016/j.pnpbp.2016.02.012. (PMID: 10.1016/j.pnpbp.2016.02.01226944656)
Kumar S, Ayyannan SR (2022) Identification of new small molecule monoamine oxidase-B inhibitors through pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation studies. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2112082. (PMID: 10.1080/07391102.2022.211208236576199)
Borroni E et al (2017) Sembragiline: a novel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer’s disease. J Pharmacol Exp Ther 362(3):413–423. https://doi.org/10.1124/jpet.117.241653. (PMID: 10.1124/jpet.117.24165328642233)
Cevik UA et al (2020) Multifunctional quinoxaline-hydrazone derivatives with acetylcholinesterase and monoamine oxidases inhibitory activities as potential agents against Alzheimer’s disease. Med Chem Res 29(6):1000–1011. https://doi.org/10.1007/s00044-020-02541-4. (PMID: 10.1007/s00044-020-02541-4)
Jeong GS et al (2020) Selected 1,3-benzodioxine-containing chalcones as multipotent oxidase and acetylcholinesterase inhibitors. ChemMedChem 15(23):2257–2263. https://doi.org/10.1002/cmdc.202000491. (PMID: 10.1002/cmdc.20200049132924264)
Yamali C et al (2021) Phenothiazine-based chalcones as potential dual-target inhibitors toward cholinesterases (AChE, BuChE) and monoamine oxidases (MAO-A, MAO-B). J Heterocycl Chem 58(1):161–171. https://doi.org/10.1002/jhet.4156. (PMID: 10.1002/jhet.4156)
Vishnu MS et al (2019) Experimental and computational evaluation of piperonylic acid derived hydrazones bearing isatin moieties as dual inhibitors of cholinesterases and monoamine oxidases. ChemMedChem 14(14):1359–1376. https://doi.org/10.1002/cmdc.201900277. (PMID: 10.1002/cmdc.20190027731177620)
Plazas E et al (2020) Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg Chem 98:103722. https://doi.org/10.1016/j.bioorg.2020.103722. (PMID: 10.1016/j.bioorg.2020.10372232155491)
Kumar V et al (2020) Design, synthesis and evaluation of O-pentyne substituted diphenylpyrimidines as monoamine oxidase and acetylcholinesterase inhibitors. ChemistrySelect 5(27):8021–8032. https://doi.org/10.1002/slct.202002425. (PMID: 10.1002/slct.202002425)
Ramsay RR (2016) Molecular aspects of monoamine oxidase B. Prog Neuropsychopharmacol Biol Psychiatry 69:81–89. https://doi.org/10.1016/j.pnpbp.2016.02.005. (PMID: 10.1016/j.pnpbp.2016.02.00526891670)
Marco-Contelles J et al (2016) ASS234, as a new multi-target directed propargylamine for Alzheimer’s disease therapy. Front Neurosci 10:294. https://doi.org/10.3389/fnins.2016.00294. (PMID: 10.3389/fnins.2016.00294274456654923252)
Bautista-Aguilera OM et al (2017) Multitarget-directed ligands combining cholinesterase and monoamine oxidase inhibition with histamine H3R antagonism for neurodegenerative diseases. Angew Chem Int Ed 56(41):12765–12769. https://doi.org/10.1002/anie.201706072. (PMID: 10.1002/anie.201706072)
Xu Y et al (2019) Rational design of novel selective dual-target inhibitors of acetylcholinesterase and monoamine oxidase B as potential anti-Alzheimer’s disease agents. ACS Chem Neurosci 10(1):482–496. https://doi.org/10.1021/acschemneuro.8b00357. (PMID: 10.1021/acschemneuro.8b0035730110536)
Joubert J et al (2017) Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur J Med Chem 125:853–864. https://doi.org/10.1016/j.ejmech.2016.09.041. (PMID: 10.1016/j.ejmech.2016.09.04127744252)
Pan L-F, Wang X-B, Xie S-S, Li SY, Kong LY (2014) Multitarget-directed resveratrol derivatives: anti-cholinesterases, anti-β-amyloid aggregation and monoamine oxidase inhibition properties against Alzheimer’s disease. MedChemComm 5(5):609–616. https://doi.org/10.1039/C3MD00376K. (PMID: 10.1039/C3MD00376K)
Verma G et al (2014) A review exploring biological activities of hydrazones. J Pharm Bioallied Sci 6(2):69–80. (PMID: 10.4103/0975-7406.129170247412733983749)
de Oliveira Carneiro Brum J et al (2020) Synthesis and biological activity of hydrazones and derivatives: a review. Mini Rev Med Chem 20(5):342–368. https://doi.org/10.2174/1389557519666191014142448. (PMID: 10.2174/138955751966619101414244831612828)
Rollas S, Kucukguzel SG (2007) Biological activities of hydrazone derivatives. Molecules 12(8):1910–1939. https://doi.org/10.3390/12081910. (PMID: 10.3390/12081910179600966149174)
Ali MR et al (2012) Review of biological activities of hydrazones. Indones J Pharm 23(4):193–202.
Tripathi RKP, Rai GK, Ayyannan SR (2016) Exploration of a library of 3,4-(methylenedioxy)aniline-derived semicarbazones as dual inhibitors of monoamine oxidase and acetylcholinesterase: design, synthesis, and evaluation. ChemMedChem 11(11):1145–1160. https://doi.org/10.1002/cmdc.201600128. (PMID: 10.1002/cmdc.20160012827135466)
Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of autodock. J Mol Recognit 9(1):1–5. https://doi.org/10.1002/(SICI)1099-1352(199601)9:1%3c1::AID-JMR241%3e3.0.CO;2-6. (PMID: 10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-68723313)
Lee S et al (2003) The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. euro QSAR 2002 - Designing Drugs and Crop Protectants: Processes Problems and Solutions 2003. pp 418–420.
Siddiqa A et al (2014) Synthesis and antibacterial evaluation of 2-(1, 3-benzodioxol-5-ylcarbonyl) arylsulfonohydrazide derivatives. Trop J Pharm Res 13(10):1689–1696. https://doi.org/10.4314/tjpr.v13i10.17. (PMID: 10.4314/tjpr.v13i10.17)
Cheung J et al (2013) Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med Chem Lett 4(11):1091–1096. https://doi.org/10.1021/ml400304w. (PMID: 10.1021/ml400304w249006104027152)
Kosak U et al (2016) Development of an in-vivo active reversible butyrylcholinesterase inhibitor. Sci Rep 6(1):39495. https://doi.org/10.1038/srep39495. (PMID: 10.1038/srep39495280007375175178)
Warren GL et al (2012) Essential considerations for using protein–ligand structures in drug discovery. Drug Discov Today 17(23):1270–1281. https://doi.org/10.1016/j.drudis.2012.06.011. (PMID: 10.1016/j.drudis.2012.06.01122728777)
Bowers KJ et al (2006) Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. p 43 https://doi.org/10.1109/SC.2006.54.
Tripathi RKP et al (2018) Design, synthesis, and pharmacological evaluation of 2-amino-5-nitrothiazole derived semicarbazones as dual inhibitors of monoamine oxidase and cholinesterase: effect of the size of aryl binding site. J Enzyme Inhib Med Chem 33(1):37–57. https://doi.org/10.1080/14756366.2017.1389920. (PMID: 10.1080/14756366.2017.138992029098902)
Tripathi RKP, Krishnamurthy S, Ayyannan SR (2016) Discovery of 3-hydroxy-3-phenacyloxindole analogues of isatin as potential monoamine oxidase inhibitors. ChemMedChem 11(1):119–132. https://doi.org/10.1002/cmdc.201500443. (PMID: 10.1002/cmdc.20150044326592797)
Son S-Y et al (2008) Structure of human monoamine oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci 105(15):5739–5744. https://doi.org/10.1016/j.bmc.2021.116558. (PMID: 10.1016/j.bmc.2021.116558183912142311356)
Binda C et al (2007) Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem 50(23):5848–5852. https://doi.org/10.1021/jm070677y. (PMID: 10.1021/jm070677y17915852)
Jaiswal S, Tripathi RKP, Ayyannan SR (2018) Scaffold hopping-guided design of some isatin based rigid analogs as fatty acid amide hydrolase inhibitors: synthesis and evaluation. Biomed Pharmacother 107:1611–1623. https://doi.org/10.1016/j.biopha.2018.08.125. (PMID: 10.1016/j.biopha.2018.08.12530257379)
Singh SK et al (2014) The flavonoid derivative 2-(4′-benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against aβ42-induced neurodegeneration in transgenic drosophila: insights from in silico and in vivo studies. Neurotox Res 26(4):331–350. https://doi.org/10.1007/s12640-014-9466-z. (PMID: 10.1007/s12640-014-9466-z24706035)
Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341. https://doi.org/10.1016/j.ddtec.2004.11.007. (PMID: 10.1016/j.ddtec.2004.11.00724981612)
Oprea TI (2000) Property distribution of drug-related chemical databases*. J Comput Aided Mol Des 14:251–264. https://doi.org/10.1023/A:1008130001697. (PMID: 10.1023/A:100813000169710756480)
Kummerle AE et al (2009) Studies towards the identification of putative bioactive conformation of potent vasodilator arylidene N-acylhydrazone derivatives. Eur J Med Chem 44(10):4004–4009. https://doi.org/10.1016/j.ejmech.2009.04.044. (PMID: 10.1016/j.ejmech.2009.04.04419500884)
Lima PC et al (2000) Synthesis and analgesic activity of novel N-acylarylhydrazones and isosters, derived from natural safrole. Eur J Med Chem 35(2):187–203. https://doi.org/10.1016/S0223-5234(00)00120-3. (PMID: 10.1016/S0223-5234(00)00120-310758281)
Mazzone G, Bonina F, Formica F (1978) Some aroylhydrazones of halobenzaldehydes and halogen-substituted 2,5-diaryl-1,3,4-oxadiazoles. Farmaco Sci 33(12):963–971. (PMID: 744246)
Mazzone G, Arrigo Reina R (1973) Synthesis of 3,4-(methylenedioxy)-benzoic acid hydrazides and their antimonoaminoxidasic activity. Boll Chim Farm 112(1):35–44. (PMID: 4710260)
Pham VHP et al (2005) Synthesis, structures of 2,5-diaryl-1,3,4-oxadiazoles from safrole. Tap Chi Hoa Hoc 43(2):198–202.
Devi J et al (2021) Design, synthesis, crystal structure, molecular docking studies of some diorganotin(IV) complexes derived from the piperonylic hydrazide Schiff base ligands as cytotoxic agents. J Mol Struct 1232:129992. https://doi.org/10.1016/j.molstruc.2021.129992. (PMID: 10.1016/j.molstruc.2021.129992)
Ellman GL (1958) A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys 74(2):443–450. https://doi.org/10.1016/0003-9861(58)90014-6. (PMID: 10.1016/0003-9861(58)90014-613534673)
Jaiswal S, Ayyannan SR (2022) Discovery of isatin-based carbohydrazones as potential dual inhibitors of fatty acid amide hydrolase and monoacylglycerol lipase. ChemMedChem 17(1):e202100559. https://doi.org/10.1002/cmdc.202100559. (PMID: 10.1002/cmdc.20210055934637598)
فهرسة مساهمة: Keywords: Cholinesterase; Dual inhibitors; Hydrazones; Molecular docking; Monoamine oxidase; Piperonylic acid
المشرفين على المادة: 0 (Monoamine Oxidase Inhibitors)
EC 3.1.1.8 (Cholinesterases)
QX3V1NO0KH (piperonylic acid)
0 (Hydrazones)
103-47-9 (2-(N-cyclohexylamino)ethanesulfonic acid)
0 (Cholinesterase Inhibitors)
EC 1.4.3.4 (Monoamine Oxidase)
EC 3.1.1.7 (Acetylcholinesterase)
تواريخ الأحداث: Date Created: 20221110 Date Completed: 20231113 Latest Revision: 20231113
رمز التحديث: 20231215
DOI: 10.1007/s11030-022-10564-9
PMID: 36355337
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-501X
DOI:10.1007/s11030-022-10564-9