دورية أكاديمية

Mass spectrometry captures biased signalling and allosteric modulation of a G-protein-coupled receptor.

التفاصيل البيبلوغرافية
العنوان: Mass spectrometry captures biased signalling and allosteric modulation of a G-protein-coupled receptor.
المؤلفون: Yen HY; Chemical Research Laboratory, University of Oxford, Oxford, UK. hsinyungyen@gate.sinica.edu.tw.; OMass Therapeutics, Oxford, UK. hsinyungyen@gate.sinica.edu.tw.; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan. hsinyungyen@gate.sinica.edu.tw., Liko I; Chemical Research Laboratory, University of Oxford, Oxford, UK.; OMass Therapeutics, Oxford, UK., Song W; Department of Biochemistry, University of Oxford, Oxford, UK.; Rahko, London, UK., Kapoor P; OMass Therapeutics, Oxford, UK., Almeida F; OMass Therapeutics, Oxford, UK., Toporowska J; Department of Chemistry, King's College London, London, UK., Gherbi K; OMass Therapeutics, Oxford, UK., Hopper JTS; OMass Therapeutics, Oxford, UK., Charlton SJ; OMass Therapeutics, Oxford, UK.; School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK., Politis A; Department of Chemistry, King's College London, London, UK.; Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK., Sansom MSP; Department of Biochemistry, University of Oxford, Oxford, UK., Jazayeri A; OMass Therapeutics, Oxford, UK. ali.jazayeri@omass.com., Robinson CV; Chemical Research Laboratory, University of Oxford, Oxford, UK. carol.robinson@chem.ox.ac.uk.; Kavli Institute for Nanoscience Discovery, Oxford, UK. carol.robinson@chem.ox.ac.uk.
المصدر: Nature chemistry [Nat Chem] 2022 Dec; Vol. 14 (12), pp. 1375-1382. Date of Electronic Publication: 2022 Nov 10.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101499734 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1755-4349 (Electronic) Linking ISSN: 17554330 NLM ISO Abbreviation: Nat Chem Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group
مواضيع طبية MeSH: Receptors, Adrenergic, beta-2*/chemistry , Receptors, Adrenergic, beta-2*/metabolism , Receptors, G-Protein-Coupled*/metabolism, Allosteric Regulation ; Isoproterenol/pharmacology ; Ligands ; GTP-Binding Proteins/metabolism ; Ions ; Mass Spectrometry ; Zinc/metabolism
مستخلص: G-protein-coupled receptors signal through cognate G proteins. Despite the widespread importance of these receptors, their regulatory mechanisms for G-protein selectivity are not fully understood. Here we present a native mass spectrometry-based approach to interrogate both biased signalling and allosteric modulation of the β 1 -adrenergic receptor in response to various ligands. By simultaneously capturing the effects of ligand binding and receptor coupling to different G proteins, we probed the relative importance of specific interactions with the receptor through systematic changes in 14 ligands, including isoprenaline derivatives, full and partial agonists, and antagonists. We observed enhanced dynamics of the intracellular loop 3 in the presence of isoprenaline, which is capable of acting as a biased agonist. We also show here that endogenous zinc ions augment the binding in receptor-G s complexes and propose a zinc ion-binding hotspot at the TM5/TM6 intracellular interface of the receptor-G s complex. Further interrogation led us to propose a mechanism in which zinc ions facilitate a structural transition of the intermediate complex towards the stable state.
(© 2022. The Author(s).)
References: Congreve, M., de Graaf, C., Swain, N. A. & Tate, C. G. Impact of GPCR structures on drug discovery. Cell 181, 81–91 (2020). (PMID: 10.1016/j.cell.2020.03.003)
Chung, K. Y. et al. Conformational changes in the G protein Gs induced by the β 2 adrenergic receptor. Nature 477, 611–615 (2011). (PMID: 10.1038/nature10488)
West, G. M. et al. Ligand-dependent perturbation of the conformational ensemble for the GPCR β 2 adrenergic receptor revealed by HDX. Structure 19, 1424–1432 (2011). (PMID: 10.1016/j.str.2011.08.001)
Du, Y. et al. Assembly of a GPCR-G protein complex. Cell 177, 1232–1242 e7 (2019). (PMID: 10.1016/j.cell.2019.04.022)
Gavriilidou, A. F. M. et al. Insights into the basal activity and activation mechanism of the β 1 adrenergic receptor using native mass spectrometry. J. Am. Soc. Mass Spectrom. 30, 529–537 (2019). (PMID: 10.1007/s13361-018-2110-z)
Wu, N. et al. High-mass MALDI-MS unravels ligand-mediated G protein-coupling selectivity to GPCRs. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2024146118 (2021).
Martens, C., Shekhar, M., Lau, A. M., Tajkhorshid, E. & Politis, A. Integrating hydrogen–deuterium exchange mass spectrometry with molecular dynamics simulations to probe lipid-modulated conformational changes in membrane proteins. Nat. Protoc. 14, 3183–3204 (2019). (PMID: 10.1038/s41596-019-0219-6)
Yen, H. Y. et al. Ligand binding to a G protein-coupled receptor captured in a mass spectrometer. Sci. Adv. 3, e1701016 (2017). (PMID: 10.1126/sciadv.1701016)
Agasid, M. T., Sørensen, L., Urner, L. H., Yan, J. & Robinson, C. V. The effects of sodium ions on ligand binding and conformational states of G protein-coupled receptors—insights from mass spectrometry. J. Am. Chem. Soc. 143, 4085–4089 (2021). (PMID: 10.1021/jacs.0c11837)
Hanson, M. A. et al. A specific cholesterol binding site is established by the 2.8 Å structure of the human β 2 -adrenergic receptor. Structure 16, 897–905 (2008). (PMID: 10.1016/j.str.2008.05.001)
Kiriakidi, S. et al. Effects of cholesterol on GPCR function: insights from computational and experimental studies. Adv. Exp. Med. Biol. 1135, 89–103 (2019). (PMID: 10.1007/978-3-030-14265-0_5)
Zarzycka, B., Zaidi, S. A., Roth, B. L. & Katritch, V. Harnessing ion-binding sites for GPCR pharmacology. Pharmacol. Rev. 71, 571–595 (2019). (PMID: 10.1124/pr.119.017863)
Stojanovic, A., Stitham, J. & Hwa, J. Critical role of transmembrane segment zinc binding in the structure and function of rhodopsin. J. Biol. Chem. 279, 35932–35941 (2004). (PMID: 10.1074/jbc.M403821200)
Warne, T. et al. The structural basis for agonist and partial agonist action on a β 1 -adrenergic receptor. Nature 469, 241–244 (2011). (PMID: 10.1038/nature09746)
Warne, T., Serrano-Vega, M. J., Tate, C. G. & Schertler, G. F. Development and crystallization of a minimal thermostabilised G protein-coupled receptor. Protein Expr. Purif. 65, 204–213 (2009). (PMID: 10.1016/j.pep.2009.01.014)
Carpenter, B. & Tate, C. G. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Eng. Des. Sel. 29, 583–594 (2016).
Warne, T., Edwards, P. C., Dore, A. S., Leslie, A. G. W. & Tate, C. G. Molecular basis for high-affinity agonist binding in GPCRs. Science 364, 775–778 (2019). (PMID: 10.1126/science.aau5595)
Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β 2 adrenoceptor. Nature 469, 175–180 (2011). (PMID: 10.1038/nature09648)
Roth, C. B., Hanson, M. A. & Stevens, R. C. Stabilization of the human β 2 -adrenergic receptor TM4–TM3–TM5 helix interface by mutagenesis of Glu122 3.41 , a critical residue in GPCR structure. J. Mol. Biol. 376, 1305–1319 (2008). (PMID: 10.1016/j.jmb.2007.12.028)
Yen, H. Y. et al. PtdIns(4,5)P 2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018). (PMID: 10.1038/s41586-018-0325-6)
Baker, J. G. The selectivity of β-adrenoceptor agonists at human β 1 -, β 2 - and β 3 -adrenoceptors. Br. J. Pharmacol. 160, 1048–1061 (2010). (PMID: 10.1111/j.1476-5381.2010.00754.x)
Baker, J. G., Proudman, R. G. & Tate, C. G. The pharmacological effects of the thermostabilising (m23) mutations and intra and extracellular (β36) deletions essential for crystallisation of the turkey β-adrenoceptor. Naunyn Schmiedebergs Arch. Pharmacol. 384, 71–91 (2011). (PMID: 10.1007/s00210-011-0648-4)
Daaka, Y., Luttrell, L. M. & Lefkowitz, R. J. Switching of the coupling of the β 2 -adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997). (PMID: 10.1038/36362)
Lefkowitz, R. J., Pierce, K. L. & Luttrell, L. M. Dancing with different partners: protein kinase A phosphorylation of seven membrane-spanning receptors regulates their G protein-coupling specificity. Mol. Pharmacol. 62, 971–974 (2002). (PMID: 10.1124/mol.62.5.971)
Lukasheva, V. et al. Signal profiling of the β 1 AR reveals coupling to novel signalling pathways and distinct phenotypic responses mediated by β 1 AR and β 2 AR. Sci. Rep. 10, 8779 (2020). (PMID: 10.1038/s41598-020-65636-3)
Grahl, A., Abiko, L. A., Isogai, S., Sharpe, T. & Grzesiek, S. A high-resolution description of β 1 -adrenergic receptor functional dynamics and allosteric coupling from backbone NMR. Nat. Commun. 11, 2216 (2020). (PMID: 10.1038/s41467-020-15864-y)
Swaminath, G., Lee, T. W. & Kobilka, B. Identification of an allosteric binding site for Zn 2+ on the β 2 adrenergic receptor. J. Biol. Chem. 278, 352–356 (2003). (PMID: 10.1074/jbc.M206424200)
Bang, I. & Choi, H. J. Structural features of β 2 adrenergic receptor: crystal structures and beyond. Mol. Cells 38, 105–111 (2015). (PMID: 10.14348/molcells.2015.2301)
Liu, X. et al. Structural insights into the process of GPCR-G protein complex formation. Cell 177, 1243–1251 e6 (2019). (PMID: 10.1016/j.cell.2019.04.021)
Arimont, M. et al. Identification of key structural motifs Involved in 7 transmembrane signaling of adhesion GPCRs. ACS Pharmacol. Transl. Sci. 2, 101–113 (2019). (PMID: 10.1021/acsptsci.8b00051)
Mattedi, G., Acosta-Gutierrez, S., Clark, T. & Gervasio, F. L. A combined activation mechanism for the glucagon receptor. Proc. Natl Acad. Sci. USA 117, 15414–15422 (2020). (PMID: 10.1073/pnas.1921851117)
Wootten, D., Christopoulos, A. & Sexton, P. M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat. Rev. Drug Discov. 12, 630–644 (2013). (PMID: 10.1038/nrd4052)
Gentry, P. R., Sexton, P. M. & Christopoulos, A. Novel allosteric modulators of G protein-coupled receptors. J. Biol. Chem. 290, 19478–19488 (2015). (PMID: 10.1074/jbc.R115.662759)
Ring, A. M. et al. Adrenaline-activated structure of β 2 -adrenoceptor stabilized by an engineered nanobody. Nature 502, 575–579 (2013). (PMID: 10.1038/nature12572)
Gault, J. et al. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods 13, 333–336 (2016). (PMID: 10.1038/nmeth.3771)
Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015). (PMID: 10.1021/acs.analchem.5b00140)
Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016). (PMID: 10.1021/acs.jctc.5b00935)
Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995). (PMID: 10.1016/0010-4655(95)00042-E)
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017). (PMID: 10.1038/nmeth.4067)
Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010). (PMID: 10.1021/jp101759q)
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997). (PMID: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H)
معلومات مُعتمدة: 221795 United Kingdom WT_ Wellcome Trust; 092970/Z/10/Z United Kingdom WT_ Wellcome Trust; BB/L002558/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; 092970 United Kingdom WT_ Wellcome Trust; United Kingdom WT_ Wellcome Trust; 221795/Z/20/Z United Kingdom WT_ Wellcome Trust
سلسلة جزيئية: figshare 10.6084/m9.figshare.19688640; 10.6084/m9.figshare.19754662.v1
المشرفين على المادة: 0 (Receptors, Adrenergic, beta-2)
L628TT009W (Isoproterenol)
0 (Receptors, G-Protein-Coupled)
0 (Ligands)
EC 3.6.1.- (GTP-Binding Proteins)
0 (Ions)
J41CSQ7QDS (Zinc)
تواريخ الأحداث: Date Created: 20221111 Date Completed: 20221220 Latest Revision: 20240706
رمز التحديث: 20240706
مُعرف محوري في PubMed: PMC9758051
DOI: 10.1038/s41557-022-01041-9
PMID: 36357787
قاعدة البيانات: MEDLINE
الوصف
تدمد:1755-4349
DOI:10.1038/s41557-022-01041-9