دورية أكاديمية

Myeloid-derived itaconate suppresses cytotoxic CD8 + T cells and promotes tumour growth.

التفاصيل البيبلوغرافية
العنوان: Myeloid-derived itaconate suppresses cytotoxic CD8 + T cells and promotes tumour growth.
المؤلفون: Zhao H; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA., Teng D; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA., Yang L; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.; Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China., Xu X; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA., Chen J; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Jiang T; Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany., Feng AY; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA., Zhang Y; Department of Surgery, University of Michigan, Ann Arbor, MI, USA., Frederick DT; Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA., Gu L; Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany., Cai L; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA., Asara JM; Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA., Pasca di Magliano M; Department of Surgery, University of Michigan, Ann Arbor, MI, USA.; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.; Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA.; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA., Boland GM; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA., Flaherty KT; Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA., Swanson KD; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA., Liu D; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Rabinowitz JD; Department of Chemistry, Princeton University, Princeton, NJ, USA.; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.; Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA., Zheng B; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA. bin.zheng@cbrc2.mgh.harvard.edu.
المصدر: Nature metabolism [Nat Metab] 2022 Dec; Vol. 4 (12), pp. 1660-1673. Date of Electronic Publication: 2022 Nov 14.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: Germany NLM ID: 101736592 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2522-5812 (Electronic) Linking ISSN: 25225812 NLM ISO Abbreviation: Nat Metab Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Nature, [2019]-
مواضيع طبية MeSH: Neoplasms*/metabolism , Myeloid-Derived Suppressor Cells*/metabolism, Mice ; Female ; Animals ; CD8-Positive T-Lymphocytes ; Succinates/pharmacology ; Succinates/metabolism ; Tumor Microenvironment
مستخلص: The tumour microenvironment possesses mechanisms that suppress anti-tumour immunity. Itaconate is a metabolite produced from the Krebs cycle intermediate cis-aconitate by the activity of immune-responsive gene 1 (IRG1). While it is known to be immune modulatory, the role of itaconate in anti-tumour immunity is unclear. Here, we demonstrate that myeloid-derived suppressor cells (MDSCs) secrete itaconate that can be taken up by CD8 + T cells and suppress their proliferation, cytokine production and cytolytic activity. Metabolite profiling, stable-isotope tracing and metabolite supplementation studies indicated that itaconate suppressed the biosynthesis of aspartate and serine/glycine in CD8 + T cells to attenuate their proliferation and function. Host deletion of Irg1 in female mice bearing allografted tumours resulted in decreased tumour growth, inhibited the immune-suppressive activities of MDSCs, promoted anti-tumour immunity of CD8 + T cells and enhanced the anti-tumour activity of anti-PD-1 antibody treatment. Furthermore, we found a significant negative correlation between IRG1 expression and response to PD-1 immune checkpoint blockade in patients with melanoma. Our findings not only reveal a previously unknown role of itaconate as an immune checkpoint metabolite secreted from MDSCs to suppress CD8 + T cells, but also establish IRG1 as a myeloid-selective target in immunometabolism whose inhibition promotes anti-tumour immunity and enhances the efficacy of immune checkpoint protein blockade.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020). (PMID: 10.1038/s41577-019-0203-y)
Leone, R. D. & Powell, J. D. Metabolism of immune cells in cancer. Nat. Rev. Cancer 20, 516–531 (2020). (PMID: 10.1038/s41568-020-0273-y)
Kaymak, I., Williams, K. S., Cantor, J. R. & Jones, R. G. Immunometabolic interplay in the tumor microenvironment. Cancer Cell 39, 28–37 (2021). (PMID: 10.1016/j.ccell.2020.09.004)
Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8 + T-lymphocyte fate. Nature 540, 236–241 (2016). (PMID: 10.1038/nature20165)
Bunse, L. et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat. Med. 24, 1192–1203 (2018). (PMID: 10.1038/s41591-018-0095-6)
Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021). (PMID: 10.1038/s41577-020-00490-y)
Tarhini, A. A. et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS ONE 9, e87705 (2014). (PMID: 10.1371/journal.pone.0087705)
Sade-Feldman, M. et al. Clinical significance of circulating CD33 + CD11b + HLA-DR myeloid cells in patients with stage IV melanoma treated with ipilimumab. Clin. Cancer Res. 22, 5661–5672 (2016). (PMID: 10.1158/1078-0432.CCR-15-3104)
Hou, A., Hou, K., Huang, Q., Lei, Y. & Chen, W. Targeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitors. Front. Immunol. 11, 783 (2020). (PMID: 10.3389/fimmu.2020.00783)
O’Neill, L. A. J. & Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19, 273–281 (2019). (PMID: 10.1038/s41577-019-0128-5)
Hooftman, A. & O’Neill, L. A. J. The immunomodulatory potential of the metabolite itaconate. Trends Immunol. 40, 687–698 (2019). (PMID: 10.1016/j.it.2019.05.007)
Kim, S. H. et al. Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma. J. Investig. Dermatol. 137, 1740–1748 (2017). (PMID: 10.1016/j.jid.2017.03.033)
Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013). (PMID: 10.1073/pnas.1218599110)
Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol. 1, aaf8943 (2016). (PMID: 10.1126/sciimmunol.aaf8943)
Strelko, C. L. et al. Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc. 133, 16386–16389 (2011). (PMID: 10.1021/ja2070889)
Alshetaiwi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol. 5, eaay6017 (2020).
Cordes, T. et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem. 291, 14274–14284 (2016). (PMID: 10.1074/jbc.M115.685792)
Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 25, 1916–1927 (2019). (PMID: 10.1038/s41591-019-0654-5)
Rodriguez, P. C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004). (PMID: 10.1158/0008-5472.CAN-04-0465)
Sullivan, L. B., Gui, D. Y. & Vander Heiden, M. G. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat. Rev. Cancer 16, 680–693 (2016). (PMID: 10.1038/nrc.2016.85)
Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017). (PMID: 10.1016/j.cmet.2016.12.011)
Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016). (PMID: 10.1016/j.cmet.2016.06.007)
Kelly, B. & Pearce, E. L. Amino assets: how amino acids support immunity. Cell Metab. 32, 154–175 (2020). (PMID: 10.1016/j.cmet.2020.06.010)
Daniels, B.P. et al. The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity 50, 64–76 (2019). (PMID: 10.1016/j.immuni.2018.11.017)
Lo, J. A. et al. Epitope spreading toward wild-type melanocyte-lineage antigens rescues suboptimal immune checkpoint blockade responses. Sci. Transl. Med. 13, 581 (2021).
Smith, C. et al. IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov. 2, 722–735 (2012). (PMID: 10.1158/2159-8290.CD-12-0014)
Yu, J. et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J. Immunol. 190, 3783–3797 (2013). (PMID: 10.4049/jimmunol.1201449)
Weiss, J. M. et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J. Clin. Invest. 128, 3794–3805 (2018). (PMID: 10.1172/JCI99169)
Luan, H. H. & Medzhitov, R. Food fight: role of itaconate and other metabolites in antimicrobial defense. Cell Metab. 24, 379–387 (2016). (PMID: 10.1016/j.cmet.2016.08.013)
Zasłona, Z. & O’Neill, L. A. J. Cytokine-like roles for metabolites in immunity. Mol. Cell 78, 814–823 (2020). (PMID: 10.1016/j.molcel.2020.04.002)
Shen, H. et al. The human knockout gene CLYBL connects itaconate to vitamin B12. Cell 171, 771–782 (2017). (PMID: 10.1016/j.cell.2017.09.051)
Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018). (PMID: 10.1038/nature25986)
Bambouskova, M. et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ–ATF3 inflammatory axis. Nature 556, 501–504 (2018). (PMID: 10.1038/s41586-018-0052-z)
Bambouskova, M. et al. Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Rep. 34, 108756 (2021). (PMID: 10.1016/j.celrep.2021.108756)
Hooftman, A. et al. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab. 32, 468–478 (2020). (PMID: 10.1016/j.cmet.2020.07.016)
Runtsch, M. C. et al. Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab. 34, 487–501 (2022). (PMID: 10.1016/j.cmet.2022.02.002)
DeNicola, G. M. et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat. Genet. 47, 1475–1481 (2015). (PMID: 10.1038/ng.3421)
Yuan, P. et al. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proc. Natl Acad. Sci. USA 110, 18226–18231 (2013). (PMID: 10.1073/pnas.1317577110)
Jenkins, M. H. et al. Multiple murine BRaf V600Emelanoma cell lines with sensitivity to PLX4032. Pigment Cell Melanoma Res. 27, 495–501 (2014). (PMID: 10.1111/pcmr.12220)
Huffaker, T. B. et al. A Stat1 bound enhancer promotes Nampt expression and function within tumor associated macrophages. Nat. Commun. 12, 2620 (2021). (PMID: 10.1038/s41467-021-22923-5)
Alghamri, M. S. et al. G-CSF secreted by mutant IDH1 glioma stem cells abolishes myeloid cell immunosuppression and enhances the efficacy of immunotherapy. Sci. Adv. 7, eabh3243 (2021). (PMID: 10.1126/sciadv.abh3243)
Olsen, R. R. et al. ASCL1 represses a SOX9 + neural crest stem-like state in small cell lung cancer. Genes Dev. 35, 847–869 (2021). (PMID: 10.1101/gad.348295.121)
معلومات مُعتمدة: P30 CA046592 United States CA NCI NIH HHS; R21 CA227588 United States CA NCI NIH HHS; R01 CA151588 United States CA NCI NIH HHS; R01 CA163591 United States CA NCI NIH HHS; R50 CA232985 United States CA NCI NIH HHS; R01 CA198074 United States CA NCI NIH HHS; DP1 DK113643 United States DK NIDDK NIH HHS; R01 CA219814 United States CA NCI NIH HHS; U01 CA224145 United States CA NCI NIH HHS
المشرفين على المادة: Q4516562YH (itaconic acid)
0 (Succinates)
تواريخ الأحداث: Date Created: 20221114 Date Completed: 20221223 Latest Revision: 20240528
رمز التحديث: 20240529
مُعرف محوري في PubMed: PMC10593361
DOI: 10.1038/s42255-022-00676-9
PMID: 36376563
قاعدة البيانات: MEDLINE
الوصف
تدمد:2522-5812
DOI:10.1038/s42255-022-00676-9