دورية أكاديمية

3D scattering microphantom sample to assess quantitative accuracy in tomographic phase microscopy techniques.

التفاصيل البيبلوغرافية
العنوان: 3D scattering microphantom sample to assess quantitative accuracy in tomographic phase microscopy techniques.
المؤلفون: Krauze W; Institute of Micromechanics and Photonics, Warsaw University of Technology, Boboli 8 street, Warsaw, 02-525, Poland. wojciech.krauze@pw.edu.pl., Kuś A; Institute of Micromechanics and Photonics, Warsaw University of Technology, Boboli 8 street, Warsaw, 02-525, Poland., Ziemczonok M; Institute of Micromechanics and Photonics, Warsaw University of Technology, Boboli 8 street, Warsaw, 02-525, Poland., Haimowitz M; Department of Electrical Engineering, University of Texas at Austin, 2501 Speedway, Austin, TX, 78712, USA., Chowdhury S; Department of Electrical Engineering, University of Texas at Austin, 2501 Speedway, Austin, TX, 78712, USA., Kujawińska M; Institute of Micromechanics and Photonics, Warsaw University of Technology, Boboli 8 street, Warsaw, 02-525, Poland.
المصدر: Scientific reports [Sci Rep] 2022 Nov 15; Vol. 12 (1), pp. 19586. Date of Electronic Publication: 2022 Nov 15.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Microscopy* , Refractometry*/methods, Phantoms, Imaging ; Photons ; Imaging, Three-Dimensional
مستخلص: In this paper we present a structurally-complex biomimetic scattering structure, fabricated with two-photon polymerization, and utilize this object in order to benchmark a computational imaging system. The phantom allows to tailor the scattering by modifying its degrees of freedom i.e. refractive index contrast and scattering layer dimensions and incorporates a 3D imaging quality test, representing a single cell within tissue. While the sample may be used with multiple 3D microscopy techniques, we demonstrate the impact of scattering on three tomographic phase microscopy (TPM) reconstruction methods. One of these methods assumes the sample to be weak-scattering, while the other two take multiple scattering into account. The study is performed at two wavelengths (visible and near-infrared), which serve as a scaling factor for the scattering phenomenon. We find that changing the wavelength from visible into near-infrared impacts the applicability of TPM reconstruction methods. As a result of reduced scattering in near-infrared region, the multiple-scattering-oriented techniques perform in fact worse than a method aimed for weak-scattering samples. This implies a necessity of selecting proper approach depending on sample's scattering characteristics even in case of subtle changes in the object-light interaction.
(© 2022. The Author(s).)
References: Appl Opt. 2022 Apr 20;61(12):3337-3348. (PMID: 35471429)
Opt Lett. 2021 Apr 15;46(8):1987-1990. (PMID: 33857123)
Nature. 2017 Apr 19;544(7650):337-339. (PMID: 28425999)
Opt Express. 2015 Jun 29;23(13):16933-48. (PMID: 26191704)
Nat Methods. 2005 Dec;2(12):932-40. (PMID: 16299478)
Nat Methods. 2018 Jan 3;15(1):24-26. (PMID: 29298292)
Nat Protoc. 2019 Jun;14(6):1756-1771. (PMID: 31053799)
Cytometry A. 2021 Apr;99(4):388-398. (PMID: 32959478)
Sci Rep. 2019 Dec 11;9(1):18872. (PMID: 31827171)
Opt Lett. 2019 Jul 15;44(14):3442-3445. (PMID: 31305543)
Drug Discov Today. 2016 Sep;21(9):1553-1560. (PMID: 27371506)
Circ Res. 2004 Dec 10;95(12):1154-66. (PMID: 15591237)
J Microsc. 2002 Feb;205(Pt 2):165-76. (PMID: 11879431)
Opt Express. 2014 May 5;22(9):10398-407. (PMID: 24921741)
Ultramicroscopy. 2015 Oct;157:35-47. (PMID: 26057688)
Opt Express. 2017 Nov 27;25(24):30445-30458. (PMID: 29221073)
Opt Lett. 2009 Jan 1;34(1):79-81. (PMID: 19109646)
Appl Opt. 1998 May 10;37(14):2996-3006. (PMID: 18273246)
Biomed Opt Express. 2020 Mar 11;11(4):1919-1926. (PMID: 32341857)
J Biomed Opt. 2014 Jan;19(1):011005. (PMID: 23797986)
Appl Opt. 2017 Nov 20;56(33):9247-9256. (PMID: 29216097)
Opt Express. 2018 May 28;26(11):14678-14688. (PMID: 29877404)
Opt Express. 2009 Jun 8;17(12):10304-18. (PMID: 19506684)
Opt Express. 2011 Jan 17;19(2):1016-26. (PMID: 21263640)
Opt Express. 2018 Jun 25;26(13):16609-16623. (PMID: 30119488)
Opt Express. 2017 Sep 4;25(18):21786-21800. (PMID: 29041472)
Biomed Opt Express. 2012 Aug 1;3(8):1757-73. (PMID: 22876342)
Appl Opt. 2022 Feb 10;61(5):B297-B306. (PMID: 35201152)
Opt Express. 2015 May 4;23(9):11394-403. (PMID: 25969234)
J Opt Soc Am A Opt Image Sci Vis. 2011 Aug 1;28(8):1554-61. (PMID: 21811316)
Appl Opt. 2014 Apr 1;53(10):2058-66. (PMID: 24787162)
Front Physiol. 2020 Sep 16;11:568087. (PMID: 33041864)
J Biophotonics. 2010 Jul;3(7):462-7. (PMID: 20209580)
معلومات مُعتمدة: 1820/19/Z01/POB1/2020 Politechnika Warszawska; TEAM TECH/2016-1/4 Fundacja na rzecz Nauki Polskiej
تواريخ الأحداث: Date Created: 20221115 Date Completed: 20221118 Latest Revision: 20230109
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9666505
DOI: 10.1038/s41598-022-24193-7
PMID: 36380058
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-022-24193-7