دورية أكاديمية

Effects of spring- versus fall-calving on perinatal nutrient availability and neonatal vigor in beef cattle.

التفاصيل البيبلوغرافية
العنوان: Effects of spring- versus fall-calving on perinatal nutrient availability and neonatal vigor in beef cattle.
المؤلفون: Wichman LG; Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA., Redifer CA; Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA., Rathert-Williams AR; Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA., Duncan NB; Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA., Payne CA; Department of Veterinary Extension and Continuing Education, University of Missouri, Columbia, MO 65211, USA., Meyer AM; Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
المصدر: Translational animal science [Transl Anim Sci] 2022 Oct 01; Vol. 6 (4), pp. txac136. Date of Electronic Publication: 2022 Oct 01 (Print Publication: 2022).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 101738705 Publication Model: eCollection Cited Medium: Internet ISSN: 2573-2102 (Electronic) Linking ISSN: 25732102 NLM ISO Abbreviation: Transl Anim Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: Oxford : Oxford University Press
Original Publication: [Champaign, IL] : American Society of Animal Science, [2017]-
مستخلص: To determine the effect of calving season on perinatal nutrient availability and neonatal beef calf vigor, data were collected from 4 spring- (average calving date: February 14; n = 203 total) and 4 fall- (average calving date: September 20; n = 179 total) calving experiments. Time to stand was determined as minutes from birth to standing for 5 s. After birth, calf weight and size (length, heart and abdominal girth, and cannon circumference) were recorded. Jugular blood samples and rectal temperatures were obtained at 0, 6, 12, and 24 h postnatally in 6 experiments and at 48 h postnatally in Exp. 2 to 8. Data were analyzed with fixed effects of season (single point) or season, hour, and their interaction (over time, using repeated measures). Experiment was a random effect; calf sex was included when P ≤ 0.25. Within calving season, correlations were determined between calf size, vigor, and 48-h serum total protein. Fall-born calves tended to have lighter ( P = 0.09) birth weight and faster ( P = 0.05) time to stand than spring-born calves. Season did not affect ( P ≥ 0.18) gestation length, other calf size measures, or 48-h serum total protein. Fall-born calves had greater ( P ≤ 0.003) rectal temperature at 0, 24, and 48 h postnatal. Spring-born calves had greater ( P ≤ 0.009) circulating glucose at 0 h, serum non-esterified fatty acids at 0 and 6 h, and plasma triglycerides at 0, 6, 12, and 48 h. Fall-born calves had greater ( P ≤ 0.03) sodium from 6 to 48 h and magnesium from 0 to 24 h of age. Phosphorus was greater ( P ≤ 0.02) at 6 and 12 h of age in spring-born calves. Spring-born calves had greater ( P ≤ 0.04) aspartate aminotransferase at 12 and 24 h and creatine kinase at 0 and 12 h of age. Fall-born calves had greater ( P ≤ 0.03) albumin, calcium, and chloride, had lower ( P ≤ 0.03) bicarbonate and direct bilirubin, and tended to have greater ( P = 0.10) anion gap (all main effects of calving season). Calf birth weight had a weak positive relationship ( P ≤ 0.03) with 48-h serum total protein and time to stand in fall-born, but not spring-born, calves. Overall, fetal growth was restricted and neonatal dehydration was increased by warm conditions for fall-born calves, but vigor and metabolism were negatively affected by cold conditions in spring-born calves. These data suggest that calving season influences perinatal nutrient availability, which may impact the transition of beef calves to postnatal life.
(© The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Animal Science.)
References: Animal. 2017 Dec;11(12):2252-2259. (PMID: 28535836)
Theriogenology. 2020 Sep 15;154:17-23. (PMID: 32470705)
Theriogenology. 2020 Jul 1;150:471-479. (PMID: 32278591)
J Anim Sci. 2019 Feb 1;97(2):509-520. (PMID: 30476110)
J Anim Sci. 2014 Oct;92(10):4449-56. (PMID: 25085395)
J Dairy Sci. 1997 May;80(5):838-44. (PMID: 9178123)
J Dairy Sci. 2012 Dec;95(12):7128-36. (PMID: 23021751)
J Perinat Med. 1982;10(1):42-7. (PMID: 7199572)
Vet Clin North Am Food Anim Pract. 2019 Jul;35(2):343-353. (PMID: 31103186)
Vet Rec Open. 2019 Jan 25;6(1):e000325. (PMID: 30740228)
J Nutr. 1997 Oct;127(10):2011-23. (PMID: 9311959)
J Anim Sci. 2004 Feb;82(2):438-44. (PMID: 14974541)
J Dairy Sci. 2003 Jun;86(6):2131-44. (PMID: 12836950)
J Anim Sci. 1997 Jun;75(6):1452-60. (PMID: 9250504)
J Vet Intern Med. 2000 Nov-Dec;14(6):569-77. (PMID: 11110376)
Ann Rech Vet. 1983;14(4):382-9. (PMID: 6677179)
Domest Anim Endocrinol. 2012 Aug;43(2):171-85. (PMID: 22480719)
Can J Comp Med. 1980 Jan;44(1):19-23. (PMID: 7397595)
Biol Reprod. 2021 Jan 4;104(1):170-180. (PMID: 33001151)
Theriogenology. 1999 Oct 1;52(5):779-89. (PMID: 10735119)
J Anim Sci. 1991 Jan;69(1):258-63. (PMID: 2005021)
J Anim Sci. 2006 May;84(5):1093-101. (PMID: 16612011)
J Nutr. 1997 Oct;127(10):2024-9. (PMID: 9311960)
J Anim Sci. 2000 Apr;78(4):896-908. (PMID: 10784179)
Am J Vet Res. 1993 Jan;54(1):56-9. (PMID: 8093994)
J Dev Physiol. 1987 Feb;9(1):17-29. (PMID: 3559063)
J Anim Sci. 2012 Dec;90(13):5021-34. (PMID: 22952359)
Can J Comp Med. 1972 Jan;36(1):17-25. (PMID: 4110607)
J Anim Sci. 1990 Jun;68(6):1547-52. (PMID: 2384356)
J Vet Intern Med. 1998 Mar-Apr;12(2):79-83. (PMID: 9560763)
J Anim Sci. 1993 Feb;71(2):282-90. (PMID: 8440645)
J Anim Sci. 1991 Jul;69(7):2754-61. (PMID: 1885387)
J Dairy Sci. 2018 Jun;101(6):5642-5654. (PMID: 29331468)
Front Vet Sci. 2020 Mar 06;7:116. (PMID: 32211430)
J Dairy Sci. 1979 Oct;62(10):1632-8. (PMID: 536479)
J Anim Sci. 2018 Nov 21;96(11):4618-4632. (PMID: 30137366)
J Dairy Sci. 2017 Sep;100(9):7534-7543. (PMID: 28711257)
Prev Vet Med. 2018 Nov 1;159:182-195. (PMID: 30314781)
Theriogenology. 2000 Feb;53(3):803-13. (PMID: 10735045)
Theriogenology. 2022 Aug;188:145-155. (PMID: 35689944)
J Anim Sci Biotechnol. 2020 Aug 10;11:79. (PMID: 32789013)
Zentralbl Veterinarmed A. 1998 Mar;45(2):99-118. (PMID: 9591474)
Domest Anim Endocrinol. 2020 Jul;72:106433. (PMID: 32402999)
Vet Clin North Am Food Anim Pract. 2007 Nov;23(3):403-26, v. (PMID: 17920455)
J Anim Sci. 1999 Apr;77(4):824-34. (PMID: 10328345)
J Anim Sci. 2013 Jan;91(1):465-76. (PMID: 22785163)
Annu Rev Anim Biosci. 2013 Jan;1:311-37. (PMID: 25387022)
Vet Clin North Am Food Anim Pract. 2019 Jul;35(2):289-302. (PMID: 31103182)
J Dairy Sci. 2021 Feb;104(2):1744-1758. (PMID: 33309378)
J Anim Sci. 1991 Feb;69(2):853-63. (PMID: 1901848)
J Dairy Sci. 2014 Oct;97(10):6426-39. (PMID: 25108869)
J Dairy Sci. 2003 Nov;86(11):3745-55. (PMID: 14672206)
Vet Clin North Am Food Anim Pract. 1994 Mar;10(1):69-106. (PMID: 8199923)
Can J Comp Med. 1980 Jan;44(1):11-8. (PMID: 7397594)
Reprod Fertil Dev. 2016 Jul 21;:. (PMID: 27439952)
J Anim Sci. 2010 Apr;88(13 Suppl):E205-15. (PMID: 19820049)
Theriogenology. 2021 Oct 15;174:149-159. (PMID: 34454320)
فهرسة مساهمة: Keywords: cold stress; developmental programming; heat stress; metabolism; neonate; pregnancy
تواريخ الأحداث: Date Created: 20221116 Latest Revision: 20221117
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9661251
DOI: 10.1093/tas/txac136
PMID: 36381953
قاعدة البيانات: MEDLINE
الوصف
تدمد:2573-2102
DOI:10.1093/tas/txac136