دورية أكاديمية

The oldest unvaccinated Covid-19 survivors in South America.

التفاصيل البيبلوغرافية
العنوان: The oldest unvaccinated Covid-19 survivors in South America.
المؤلفون: de Castro MV; Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil., Silva MVR; Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil., Naslavsky MS; Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil., Scliar MO; Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil., Nunes K; Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil., Passos-Bueno MR; Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil., Castelli EC; Department of Pathology, School of Medicine, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil., Magawa JY; Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil.; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil.; Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil., Adami FL; Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Moretti AIS; Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil., de Oliveira VL; Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil., Boscardin SB; Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Cunha-Neto E; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil.; Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil., Kalil J; Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil.; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil., Jouanguy E; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.; Imagine Institute, University of Paris, Paris, France., Bastard P; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.; Imagine Institute, University of Paris, Paris, France., Casanova JL; Imagine Institute, University of Paris, Paris, France.; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA., Quiñones-Vega M; Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.; Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., Sosa-Acosta P; Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.; Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., Guedes JS; Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.; Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., de Almeida NP; Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.; Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., Nogueira FCS; Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.; Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., Domont GB; Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., Santos KS; Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil.; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil.; Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil., Zatz M; Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil. mayazatz@usp.br.; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil. mayazatz@usp.br.
المصدر: Immunity & ageing : I & A [Immun Ageing] 2022 Nov 16; Vol. 19 (1), pp. 57. Date of Electronic Publication: 2022 Nov 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101235427 Publication Model: Electronic Cited Medium: Print ISSN: 1742-4933 (Print) Linking ISSN: 17424933 NLM ISO Abbreviation: Immun Ageing Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [London] : BioMed Central, [2004]-
مستخلص: Background: Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated.
Results: Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN.
Conclusion: These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.
(© 2022. The Author(s).)
التعليقات: Erratum in: Immun Ageing. 2022 Dec 7;19(1):61. (PMID: 36476248)
References: WHO Coronavirus (COVID–19) Dashboard. [cited 2022 Jul 11]. Available from: https://covid19.who.int.
Chai S, Li Y, Li X, Tan J, Abdelrahim MEA, Xu X. Effect of age of COVID–19 inpatient on the severity of the disease: A meta-analysis. Int J Clin Pract. 2021;75(10):e14640. (PMID: 10.1111/ijcp.14640)
Hägg S, Jylhävä J, Wang Y, Xu H, Metzner C, Annetorp M. etal. Age, Frailty, and Comorbidity as Prognostic Factors for Short-Term Outcomes in Patients With Coronavirus Disease 2019 in Geriatric Care. J Am Med Dir Assoc. 2020;21(11):1555–9.e2. (PMID: 10.1016/j.jamda.2020.08.014)
Thakur B, Dubey P, Benitez J, Torres JP, Reddy S, Shokar N. etal. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID–19. Sci Rep. 2021;20(1):8562. (PMID: 10.1038/s41598-021-88130-w)
Conheça a faixa etáriadosmortospor covid– 19 no Brasileemma is 4 países.[cited 2022 Jul 26]. Available from: https://www.poder360.com.br/coronavirus/conheca-a-faixa-etaria-dos-mortos-por-covid?19-no-brasil-e-em-mais?4-paises?4/ .
Centers for Disease Control. Older Adults Risks and Vaccine Information | cdc. 2021[cited 2021 Oct 23]. Available from: https://www.cdc.gov/aging/covid19/covid19-older-adults.html .
CDC. Cases, Data, and Surveillance. Centers for Disease Control and Prevention. 2020[cited 2021 Nov 18]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html .
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.
Fuentes E, Fuentes M, Alarcón M, Palomo I. Immune System Dysfunction in the Elderly. An Acad Bras Ciênc. 2017;89:285–99. (PMID: 10.1590/0001-3765201720160487)
Amore S, Puppo E, Melara J, Terracciano E, Gentili S, Liotta G. Impact of COVID–19 on older adults and role of long-term care facilities during early stages of epidemic in Italy. Sci Rep. 2021;15(1):12530. (PMID: 10.1038/s41598-021-91992-9)
Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM,etal.Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Front Immunol. 2019 [cited 2022 Jul 26];10. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2019.02247 https://doi.org/10.3389/fimmu.2019.02247 .
Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol OncolJ Hematol Oncol. 2020;13(1):151. (PMID: 10.1186/s13045-020-00986-z)
Ongrádi J, Kövesdi V. Factors that may impact on immunosenescence: an appraisal. Immun Ageing A. 2010;7:7.
Haynes L. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Front Aging. 2020 [cited 2022 Jul 26];1.Available from: https://www.frontiersin.org/articles/ https://doi.org/10.3389/fragi.2020.602108 .
Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV. Remodeling of the Immune Response With Aging: Immunosenescence and Its Potential Impact on COVID–19 Immune Response. Front Immunol. 2020;7:11:1748. (PMID: 10.3389/fimmu.2020.01748)
Dugué PA, Hodge AM, Ulvik A, Ueland PM, Midttun Ø, Rinaldi S, etal. Association of Markers of Inflammation,the Kynurenine Pathway and B Vitamins with Age and Mortality, and a Signature of Inflammaging. J Gerontol A Biol Sci Med Sci. 2022;77(4):826–36.
Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90. (PMID: 10.1038/s41574-018-0059-4)
Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;3(23):2255–73. (PMID: 10.1056/NEJMra2026131)
Cron RQ.COVID–19 cytokine storm: targeting the appropriate cytokine. Lancet Rheumatol. 2021;3(4):e236–7.
Peron JPS, Nakaya H. Susceptibility of the Elderly to SARS-CoV–2 Infection: ACE–2 Overexpression, Shedding, and Antibody-dependent Enhancement(ADE). Clinics 2020 [cited 2022 Jul 26];75. Available from: http://www.scielo.br/j/clin/a/QDXYJBQk6YyLpfGNgBKtxHQ/?lang=en .
Yuki K, Fujiogi M, Koutsogiannaki S. COVID–19 pathophysiology: A review. Clin Immunol Orlando Fla. 2020;215:108427. (PMID: 10.1016/j.clim.2020.108427)
Parasher A. COVID–19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med J. 2021;97(1147):312–20. (PMID: 10.1136/postgradmedj-2020-138577)
Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, etal. Auto antibodies against type IIFNs in patients with life-threatening COVID–19. Science. 2020;370(6515):eabd4585.
Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Manry J, etal. Auto antibodies neutralizing type IIFNs are present in~ 4%of uninfected individuals over 70 years old and account for~ 20% of COVID– 19 deaths. SciImmunol. 2021;6(62): eabl4340.
Kordowitzki P.Centenarians and COVID–19: Is There a Link between Longevity and Better Immune Defense? Gerontology. 2021;1–2.
Guerini FR, Cesari M, Arosio B. Hypothetical COVID–19 protection mechanism: hints from centenarians. Immun Ageing. 2021;30(1):15. (PMID: 10.1186/s12979-021-00226-z)
Foley MK, Searle SD, Toloue A, Booth R, Falkenham A, Falzarano D. etal.Centenarians and extremely old people living with frailty can elicit durable SARS-CoV–2 spike specific IgG antibodies with virus neutralization functions following virus infection as determined by serological study. EClinicalMedicine. 2021;37:100975. (PMID: 10.1016/j.eclinm.2021.100975)
Kong Y, Cai C, Ling L, Zeng L, Wu M, Wu Y. etal. Successful treatment of a centenarian with coronavirus disease 2019 (COVID–19) using convalescent plasma. Transfus Apher Sci. 2020;59(5):102820. (PMID: 10.1016/j.transci.2020.102820)
Toppi E, De Molfetta V, Zarletti G, Tiberi M, Bossù P, Scapigliati G. The Anti-SARS-CoV–2 Antibody Response in a Centenarian Woman: A Case of Long-Term Memory? Viruses. 2021;13(9):1704.
Siopis G. Supercentenarians that Survived COVID–19. Aging Dis. 2021;12(7):1539–40.
Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T. etal. The role of a mutant CCR5 allele in HIV–1 transmission and disease progression. Nat Med. 1996;2(11):1240–3. (PMID: 10.1038/nm1196-1240)
Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S,etal.Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004;432(7018):769–75.
Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M. etal. A whole-genome association study of major determinants for host control of HIV–1. Science. 2007;317(5840):944–7. (PMID: 10.1126/science.1143767)
Andreakos E, Abel L, Vinh DC, Kaja E, Drolet BA, Zhang Q. etal. A global effort to dissect the human genetic basis of resistance to SARS-CoV–2 infection. Nat Immunol. 2022;23(2):159–64. (PMID: 10.1038/s41590-021-01030-z)
Investigational COVID–19 Convalescent Plasma; GuidanceforIndustry; Availability. Federal Register. 2020[cited2022Jul26]. Available from: https://www.federalregister.gov/documents/2020/09/21/2020–20800/investigational-covid–19-convalescent-plasma-guidance-for-industry-availability .
Naslavsky MS, Scliar MO, Yamamoto GL, Wang JYT, Zverinova S, Karp T,etal.Whole-genome sequencing of 1,171 elderly admixed individuals from São Paulo, Brazil. Nat Commun. 2022;13(1):1004.
Naslavsky MS, Yamamoto GL, de Almeida TF, Ezquina SAM, Sunaga DY, Pho N. etal. Exomic variants of an elderly cohort of Brazilians in the ABraOM database. Hum Mutat. 2017;38(7):751–63. (PMID: 10.1002/humu.23220)
Souza AM de, Resende SS, Sousa TN de, Brito CFA de. Asystematic scoping review of the genetic ancestry of the Brazilian population. Genet Mol Biol. 2019;42:495–508.
Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J,etal. In bornerrors of type IIFN immunity in patients with life-threatening COVID–19. Science. 2020;370(6515):eabd4570.
Zhang Q, Bastard P, Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID–19 pneumonia. Nature. 2022;603(7902):587–98. (PMID: 10.1038/s41586-022-04447-0)
Marchi S, Viviani S, Remarque EJ, Ruello A, Bombardieri E, Bollati V. etal. Characterization of antibody response in asymptomatic and symptomatic SARS-CoV–2 infection. PLoS ONE. 2021;16(7):e0253977. (PMID: 10.1371/journal.pone.0253977)
Maciola AK, La Raja M, Pacenti M, Salata C, De Silvestro G, Rosato A. etal. Neutralizing Antibody Responses to SARS-CoV–2 in Recovered COVID–19 Patients Are Variable and Correlate With Disease Severity and Receptor-Binding Domain Recognition. Front Immunol. 2022;13:830710. (PMID: 10.3389/fimmu.2022.830710)
Dugas M, Grote-Westrick T, Merle U, Fontenay M, Kremer AE, Hanses F. etal.Lack of antibodies against seasonal coronavirus OC43 nucleocapsid protein identifies patients at risk of critical COVID–19. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2021;139:104847. (PMID: 10.1016/j.jcv.2021.104847)
Lin CY, Wolf J, Brice DC, Sun Y, Locke M, Cherry S, etal. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV–2 antibody response. Cell Host Microbe. 2022;30(1):83–96.e4.
Abela IA, Pasin C, Schwarzmüller M, Epp S, Sickmann ME, Schanz MM, etal. Multifactorial seroprofiling dissects the contribution of pre-existing human coronaviruses responses to SARS-CoV–2 immunity. Nat Commun. 2021;12(1):6703.
Zhang A, Stacey HD, Mullarkey CE, Miller MS. Original Antigenic Sin: How First Exposure Shapes Life long Anti-Influenza Virus Immune Responses. J Immunol Baltim Md 1950. 2019;202(2):335–40.
Debisarun PA, Gössling KL, Bulut O, Kilic G, Zoodsma M, Liu Z. etal.Induction of trained immunity by influenza vaccination - impact on COVID–19. PLOS Pathog. 2021;17(10):e1009928. (PMID: 10.1371/journal.ppat.1009928)
Poulain M, Chambre D, Pes GM. Centenarians exposed to the Spanish flu in their early life better survived to COVID–19. Aging. 2021;13(18):21855–65.
Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ, Hicar MD, etal. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 2008;455(7212):532–6.
Junior S, Santos Ados. Corpos hígidos: o limpo e o sujo na Paraíba(1912–1924). Universidade Federal da Paraí­ba; 2011[cited 2022 Jul 26]. Available from: https://repositorio.ufpb.br .
Gripe Espanhola em MOC fechou. lojas efábricas e transformou escola em hospital, revela pesquisador da Unimontes. Universidade Estadual de Montes Claros-Unimontes. 2020 [cited 2022 Jul 26]. Available from: https://unimontes.br/gripe-espanhola-em-moc-fechou-lojas-e-fabricas-e-transformou-escola-em-hospital-revela-pesquisador-da-unimontes/ .
Rijkers GT, van Overveld FJ.The “original antigenic sin” and its relevance for SARS-CoV–2 (COVID–19) vaccination. Clin Immunol Commun. 2021;1:13–6.
Hashimoto K, Kouno T, Ikawa T, Hayatsu N, Miyajima Y, Yabukami H,etal. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci. 2019;116(48):24242–51.
Santos AF, Póvoa P, Paixão P, Mendonça A, Taborda-Barata L. Changes in Glycolytic Pathway in SARS-COV 2 Infection and Their Importance in Understanding the Severity of COVID–19. Front Chem. 2021;10:9:685196. (PMID: 10.3389/fchem.2021.685196)
Codo AC, Davanzo GG, MonteiroLdeB,deSouzaGF, Muraro SP, Virgilio-da-Silva JV,etal. Elevated Glucose Levels Favor SARS-CoV–2 Infection and Monocyte Response through a HIF–1α/Glycolysis-Dependent Axis. Cell Metab. 2020;32(3):437–446.e5.
Alomar FA, Alshakhs MN, Abohelaika S, Almarzouk HM, Almualim M, Al-Ali AK. etal. Elevated plasma level of the glycolysis byproduct methylglyoxal on admission is an independent biomarker of mortality in ICU COVID–19 patients. Sci Rep. 2022;9(1):9510. (PMID: 10.1038/s41598-022-12751-y)
Medini H, Zirman A, Mishmar D. Immune system cells from COVID–19 patients display compromised mitochondrial-nuclear expression co-regulation and rewiring toward glycolysis. iScience. 2021;17(12):103471. (PMID: 10.1016/j.isci.2021.103471)
Krishnan S, Nordqvist H, Ambikan AT, Gupta S, Sperk M, Svensson-Akusjärvi S. etal. Metabolic Perturbation Associated With COVID–19 Disease Severity and SARS-CoV–2 Replication. Mol Cell Proteomics MCP. 2021;20:100159. (PMID: 10.1016/j.mcpro.2021.100159)
Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. Virology. 2015;1:479–480:609–18. (PMID: 10.1016/j.virol.2015.02.038)
Kishimoto N, Yamamoto K, Abe T, Yasuoka N, Takamune N, Misumi S. Glucose-dependent aerobic glycolysis contributes to recruiting viral components into HIV–1 particles to maintain infectivity. Biochem Biophys Res Commun. 2021;549:187–93.
Ren L, Zhang W, Zhang J, Zhang J, Zhang H, Zhu Y. etal. Influenza A Virus (H1N1) Infection Induces Glycolysis to Facilitate Viral Replication. Virol Sin. 2021;36(6):1532–42. (PMID: 10.1007/s12250-021-00433-4)
Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q,etal. Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Front Cell Infect Microbiol. 2020 [cited 2022 Aug 18];10. Available from: https://www.frontiersin.org/articles/10.3389/fcimb.2020.00287.
Calder PC. Eicosanoids. Essays Biochem. 2020;64(3):423–41.
Kothapalli KSD, Park HG, Brenna JT. Polyunsaturated fatty acid biosynthesis pathway and genetics. implications for interindividual variability in prothrombotic, inflammatory conditions such as COVID–19☆,☆☆,★,★★. Prostaglandins Leukot Essent Fatty Acids. 2020;162:102183. (PMID: 10.1016/j.plefa.2020.102183)
Adili R, Hawley M, Holinstat M. Regulation of platelet function and thrombosis by omega–3 and omega–6 polyunsaturated fatty acids. Prostaglandins Other Lipid Mediat. 2018;139:10–8. (PMID: 10.1016/j.prostaglandins.2018.09.005)
Asher A, Tintle NL, Myers M, Lockshon L, Bacareza H, Harris WS. Blood omega–3 fatty acids and death from COVID–19: A pilot study. Prostaglandins Leukot Essent Fatty Acids. 2021;166:102250. (PMID: 10.1016/j.plefa.2021.102250)
Baral PK, Amin MT, Rashid MMO, Hossain MS. Assessment of Polyunsaturated Fatty Acids on COVID–19-Associated Risk Reduction. Rev Bras Farmacogn Orgao Of Soc Bras Farmacogn. 2022;32(1):50–64. (PMID: 10.1007/s43450-021-00213-x)
White CF, Pellis L, Keeling MJ, Penman BS. Detecting HLA-infectious disease associations for multi-strain pathogens. Infect Genet Evol. 2020;83:104344. (PMID: 10.1016/j.meegid.2020.104344)
Sanchez-Mazas A. A review of HLA allele and SNP associations with highly prevalent infectious diseases in human populations. Swiss Med Wkly. 2020;150:w20214.
Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clin Microbiol Rev. 2009;22(2):370–85.,Table of Contents. (PMID: 10.1128/CMR.00048-08)
Naumova E, Mihaylova A, Ivanova M, Mihailova S. Impact of KIR/HLA ligand combinations on immune responses in malignant melanoma. Cancer Immunol Immunother CII. 2007;56(1):95–100. (PMID: 10.1007/s00262-006-0151-9)
Aguiar VRC, Augusto DG, Castelli EC, Hollenbach JA, Meyer D, Nunes K,etal. An immunogenetic view of COVID–19. Genet Mol Biol. 2021[cited2022Jul26];44. Available from: http://www.scielo.br/j/gmb/a/KJzT4HNJmhnLHjTTMBY8QqK/?lang=en .
Klein J, Sato A. The HLA system. First of two parts. N Engl J Med. 2000;7(10):702–9. (PMID: 10.1056/NEJM200009073431006)
CDC. Coronavirus Disease 2019(COVID–19). Centers for Disease Control and Prevention. 2020 [cited2021Dec5]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/delta-variant.html .
Living guidance for clinical management of COVID–19. [cited2022Jul26]. Available from: https://www.who.int/publications-detail-redirect/WHO?2019-nCoV-clinical?2021?2.
Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut R, Markmann AJ, et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV–2 patients. Sci Immunol. 2020;5(48):eabc8413.
Schmidt F, Weisblum Y, Muecksch F, Hoffmann HH, Michailidis E, Lorenzi JCC. etal. Measuring SARS-CoV–2 neutralizing antibody activity using pseudotyped and chimeric viruses. J Exp Med. 2020;2(11):e20201181. (PMID: 10.1084/jem.20201181)
Castelli EC, Paz MA, Souza AS, Ramalho J, Mendes-Junior CT. Hla-mapper: An application to optimize the mapping of HLA sequences produced by massively parallel sequencing procedures. Hum Immunol. 2018;79(9):678–84. (PMID: 10.1016/j.humimm.2018.06.010)
Castelli EC, de Castro MV, Naslavsky MS, Scliar MO, Silva NSB, Andrade HS, et al. MHC Variants Associated With Symptomatic Versus Asymptomatic SARS-CoV–2 Infection in Highly Exposed Individuals. Front Immunol. 2021 [cited 2022 May 23];12. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2021.742881 https://doi.org/10.3389/fimmu.2021.742881 .
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64. (PMID: 10.1101/gr.094052.109)
Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR. etal. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. (PMID: 10.1038/nature15393)
Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P. etal.Insights into human genetic variation and population history from 929 diverse genomes. Science. 2020;367(6484):eaay5012. (PMID: 10.1126/science.aay5012)
فهرسة مساهمة: Keywords: Covid-19; Elderly; SARS-CoV-2; Supercentenarians
تواريخ الأحداث: Date Created: 20221117 Latest Revision: 20231128
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9666972
DOI: 10.1186/s12979-022-00310-y
PMID: 36384671
قاعدة البيانات: MEDLINE
الوصف
تدمد:1742-4933
DOI:10.1186/s12979-022-00310-y