دورية أكاديمية

Effects of acute exercise on memory: Considerations of exercise intensity, post-exercise recovery period and aerobic endurance.

التفاصيل البيبلوغرافية
العنوان: Effects of acute exercise on memory: Considerations of exercise intensity, post-exercise recovery period and aerobic endurance.
المؤلفون: Loprinzi PD; Department of Health, Exercise Science and Recreation Management, Exercise & Memory Laboratory, University of Mississippi, MS, 38655, Oxford, USA. pdloprin@olemiss.edu., Roig M; Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada., Tomporowski PD; Department of Kinesiology, Cognition and Skill Acquisition Laboratory, University of Georgia, Athens, GA, USA., Javadi AH; School of Psychology, University of Kent, Canterbury, UK.; School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran., Kelemen WL; Department of Psychology, Texas State University, San Marcos, TX, USA.
المصدر: Memory & cognition [Mem Cognit] 2023 May; Vol. 51 (4), pp. 1011-1026. Date of Electronic Publication: 2022 Nov 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Psychonomic Society Country of Publication: United States NLM ID: 0357443 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1532-5946 (Electronic) Linking ISSN: 0090502X NLM ISO Abbreviation: Mem Cognit Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Austin Tx Psychonomic Society
مواضيع طبية MeSH: Exercise* , Memory, Episodic*, Humans ; Young Adult ; Adult ; Memory, Long-Term ; Cognition ; Mental Recall
مستخلص: Accumulating research demonstrates that acute exercise can enhance long-term episodic memory. However, it is unclear if there is an intensity-specific effect of acute exercise on long-term episodic memory function and whether this is influenced by the post-exercise recovery period, which was the primary objective of this experiment. Another uncertainty in the literature is whether aerobic endurance influences the interaction between exercise intensity and post-exercise recovery period on long-term episodic memory function, which was a secondary objective of this study. With exercise intensity and post-exercise recovery period occurring as within-subject factors, and fitness as a between-subject factor, 59 participants (M age = 20 years) completed 12 primary laboratory visits. These visits included a 20-min bout of exercise (Control, Moderate, and Vigorous), followed by a recovery period (1, 5, 10, and 15 min) and then a word-list episodic memory task, involving an encoding phase and two long-term recall assessments (20-min and 24-h delayed recall). The primary finding from this experiment was that moderate and vigorous-intensity exercise improved memory function when compared to a non-exercise control. A secondary finding was that individuals with higher levels of aerobic endurance, compared to their lesser fit counterparts, had greater memory performance after exercise (moderate or vigorous) when compared to after a control condition. Additionally, individuals with higher levels of aerobic endurance, compared to their lesser fit counterparts, generally performed better on the memory task with longer post-exercise recovery periods. Future research should carefully consider these parameters when evaluating the effects of acute exercise on long-term episodic memory.
(© 2022. The Psychonomic Society, Inc.)
References: Aberg, M. A., Pedersen, N. L., Toren, K., Svartengren, M., Backstrand, B., Johnsson, T., ... Kuhn, H. G. (2009). Cardiovascular fitness is associated with cognition in young adulthood. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20906-20911. https://doi.org/10.1073/pnas.0905307106.
Amaral, M. D., & Pozzo-Miller, L. (2009). The dynamics of excitatory synapse formation on dendritic spines. Cellscience, 5(4), 19–25. (PMID: 200727122805008)
Audiffren, M. (2009). Acute exercise and psychological functions: A cognitive-energetic approach. In T. McMorris, P. Tomporowski, & M. Audiffren (Eds.), Exercise and cognitive function (pp. 3–39). Wiley-Blackwell.
Audiffren, M. (2016). The reticular-activating hypofrontality (RAH) model of acute exercise: Current data and future perspectives. In T. McMorris (Ed.), Exercise-cognition interaction: Neuroscience perspectives (pp. 147–166). Elsevier Academic Press. (PMID: 10.1016/B978-0-12-800778-5.00007-4)
Ball, T. J., Joy, E. A., Gren, L. H., & Shaw, J. M. (2016). Concurrent validity of a self-reported physical activity "vital sign" questionnaire with adult primary care patients. Preventing Chronic Disease, 13, E16. https://doi.org/10.5888/pcd13.150228. (PMID: 10.5888/pcd13.150228268513354747440)
Basso, J. C., & Suzuki, W. A. (2017). The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plast, 2(2), 127–152. https://doi.org/10.3233/BPL-160040. (PMID: 10.3233/BPL-160040297658535928534)
Berchtold, N. C., Chinn, G., Chou, M., Kesslak, J. P., & Cotman, C. W. (2005). Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience, 133(3), 853–861. https://doi.org/10.1016/j.neuroscience.2005.03.026. (PMID: 10.1016/j.neuroscience.2005.03.02615896913)
Blough, J., & Loprinzi, P. D. (2019). Experimental manipulation of psychological control scenarios: Implications for exercise and memory research. Psych, 1(1), 279–289. (PMID: 10.3390/psych1010019)
Bonin, P., Gelin, M., & Bugaiska, A. (2014). Animates are better remembered than inanimates: Further evidence from word and picture stimuli. Memory & Cognition, 42(3), 370–382. https://doi.org/10.3758/s13421-013-0368-8. (PMID: 10.3758/s13421-013-0368-8)
Bourne, J. N., & Harris, K. M. (2012). Nanoscale analysis of structural synaptic plasticity. Current Opinion in Neurobiology, 22(3), 372–382. https://doi.org/10.1016/j.conb.2011.10.019. (PMID: 10.1016/j.conb.2011.10.01922088391)
Brisswalter, J., Collardeau, M., & Rene, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32(9), 555–566. https://doi.org/10.2165/00007256-200232090-00002. (PMID: 10.2165/00007256-200232090-0000212096929)
Caretti, D. M. (1999). Cognitive performance and mood during respirator wear and exercise. American Industrial Hygiene Association Journal, 60(2), 213–218. https://doi.org/10.1080/00028899908984438. (PMID: 10.1080/0002889990898443810222572)
Chandler, M. C., McGowan, A. L., Payne, B. R., Hampton Wray, A., & Pontifex, M. B. (2019). Aerobic fitness relates to differential attentional but not language-related cognitive processes. Brain and Language, 198, 104681. https://doi.org/10.1016/j.bandl.2019.104681. (PMID: 10.1016/j.bandl.2019.10468131514088)
Chandler, M. C., McGowan, A. L., Burles, F., Mathewson, K. E., Scavuzzo, C. J., & Pontifex, M. B. (2020). Aerobic fitness unrelated to acquisition of spatial relational memory in college-aged adults. Journal of Sport & Exercise Psychology, 1-8. https://doi.org/10.1123/jsep.2020-0004.
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. https://doi.org/10.1016/j.brainres.2012.02.068. (PMID: 10.1016/j.brainres.2012.02.06822480735)
Cole, R. C., Hazeltine, E., Weng, T. B., Wharff, C., DuBose, L. E., Schmid, P., ... Voss, M. W. (2020). Cardiorespiratory fitness and hippocampal volume predict faster episodic associative learning in older adults. Hippocampus, 30(2), 143-155. https://doi.org/10.1002/hipo.23151.
Crush, E. A., & Loprinzi, P. D. (2017). Dose-response effects of exercise duration and recovery on cognitive functioning. Perceptual and Motor Skills, 124(6), 1164–1193. https://doi.org/10.1177/0031512517726920. (PMID: 10.1177/003151251772692028829227)
El-Sayes, J., Harasym, D., Turco, C. V., Locke, M. B., & Nelson, A. J. (2019). Exercise-induced neuroplasticity: A mechanistic model and prospects for promoting plasticity. Neuroscientist, 25(1), 65–85. https://doi.org/10.1177/1073858418771538. (PMID: 10.1177/107385841877153829683026)
Etnier, J., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52(1), 119–130. (PMID: 10.1016/j.brainresrev.2006.01.00216490256)
Etnier, J. L., Wideman, L., Labban, J. D., Piepmeier, A. T., Pendleton, D. M., Dvorak, K. K., & Becofsky, K. (2016). The effects of acute exercise on memory and brain-derived neurotrophic factor (BDNF). Journal of Sport & Exercise Psychology, 38(4), 331–340. https://doi.org/10.1123/jsep.2015-0335. (PMID: 10.1123/jsep.2015-0335)
Field, A. (2015). Discovering Statistics Using IBM SPSS Statistics (5th ed.). Sage.
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., ... American College of Sports, M. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334-1359. https://doi.org/10.1249/MSS.0b013e318213fefb.
Gomez-Pinilla, F., & Hillman, C. (2013). The influence of exercise on cognitive abilities. Comprehensive Physiology, 3(1), 403–428. https://doi.org/10.1002/cphy.c110063. (PMID: 10.1002/cphy.c110063237202923951958)
Hopkins, S. R., Dominelli, P. B., Davis, C. K., Guenette, J. A., Luks, A. M., Molgat-Seon, Y., ... Stickland, M. K. (2020). Facemasks and the cardiorespiratory response to physical activity in health and disease. Annals of the American Thoracic Society. https://doi.org/10.1513/AnnalsATS.202008-990CME.
Ishihara, T., Drollette, E. S., Ludyga, S., Hillman, C. H., & Kamijo, K. (2021). The effects of acute aerobic exercise on executive function: A systematic review and meta-analysis of individual participant data. Neuroscience and Biobehavioral Reviews, 128, 258–269. https://doi.org/10.1016/j.neubiorev.2021.06.026. (PMID: 10.1016/j.neubiorev.2021.06.02634147558)
Jung, M., Ryu, S., Kang, M., Javadi, A. H., & Loprinzi, P. D. (2022). Evaluation of the transient hypofrontality theory in the context of exercise: A systematic review with meta-analysis. Quarterly Journal of Experimental Psychology (Hove), 75(7), 1193–1214. https://doi.org/10.1177/17470218211048807. (PMID: 10.1177/17470218211048807)
Kao, S. C., Cadenas-Sanchez, C., Shigeta, T. T., Walk, A. M., Chang, Y. K., Pontifex, M. B., & Hillman, C. H. (2020). A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology, 57(7), e13425. https://doi.org/10.1111/psyp.13425. (PMID: 10.1111/psyp.1342531228362)
Labban, J. D., & Etnier, J. L. (2011). Effects of acute exercise on long-term memory. Research Quarterly for Exercise and Sport, 82(4), 712–721. https://doi.org/10.1080/02701367.2011.10599808. (PMID: 10.1080/02701367.2011.1059980822276413)
Labban, J. D., & Etnier, J. L. (2018). The effect of acute exercise on encoding and consolidation of long-term memory. Journal of Sport & Exercise Psychology, 40(6), 336–342. https://doi.org/10.1123/jsep.2018-0072. (PMID: 10.1123/jsep.2018-0072)
Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research, 1341, 12–24. https://doi.org/10.1016/j.brainres.2010.03.091. (PMID: 10.1016/j.brainres.2010.03.09120381468)
Loprinzi, P. D. (2018). Intensity-specific effects of acute exercise on human memory function: Considerations for the timing of exercise and the type of memory. Health Promotion Perspective, 8(4), 255–262. https://doi.org/10.15171/hpp.2018.36. (PMID: 10.15171/hpp.2018.36)
Loprinzi, P. D., Ponce, P., & Frith, E. (2018). Hypothesized mechanisms through which acute exercise influences episodic memory. Physiology International, 105(4), 285–297. https://doi.org/10.1556/2060.105.2018.4.28. (PMID: 10.1556/2060.105.2018.4.2830525869)
Loprinzi, P. D., Blough, J., Crawford, L., Ryu, S., Zou, L., & Li, H. (2019). The temporal effects of acute exercise on episodic memory function: Systematic review with meta-analysis. Brain Sciences, 9(4), 87. (PMID: 10.3390/brainsci9040087310034916523402)
Loprinzi, P. D., Crawford, L., Moore, D., Blough, J., Burnett, G., Chism, M., & Robinson, G. (2020). Motor behavior-induced prefrontal cortex activation and episodic memory function. The International Journal of Neuroscience, 1–21. https://doi.org/10.1080/00207454.2020.1803307.
Loprinzi, P. D., Day, S., Hendry, R., Hoffman, S., Love, A., Marable, S., ... Gilliland, B. (2021a). The effects of acute exercise on short- and long-term memory: Considerations for the timing of exercise and phases of memory. Europe's Journal of Psychology, 17(1), 85-103. https://doi.org/10.5964/ejop.2955.
Loprinzi, P. D., Loenneke, J. P., & Storm, B. C. (2021b). Effects of acute aerobic and resistance exercise on episodic memory function. Quarterly Journal of Experimental Psychology (Hove), 74(7), 1264–1283. https://doi.org/10.1177/1747021821994576. (PMID: 10.1177/1747021821994576)
Loprinzi, P. D., Lovorn, A., & Gilmore, J. (2021c). Effects of exercise on explicit memory function: Incidental and intentional encoding may depend on exercise timing. Perceptual and Motor Skills, 128, 865–884.
Loprinzi, P. D., Rigdon, B., Javadi, A. H., & Kelemen, W. (2021d). EXPRESS: Effects of acute exercise intensity on source episodic memory and metamemory accuracy. Quarterly Journal of Experimental Psychology (Hove), 17470218211069856. https://doi.org/10.1177/17470218211069856.
Loprinzi, P. D., Roig, M., Etnier, J. L., Tomporowski, P. D., & Voss, M. (2021e). Acute and chronic exercise effects on human memory: What we know and where to go from here. Journal of Clinical Medicine, 10(21). https://doi.org/10.3390/jcm10214812.
Ludyga, S., Gerber, M., & Kamijo, K. (2022). Exercise types and working memory components during development. Trends in Cognitive Sciences, 26(3), 191–203. https://doi.org/10.1016/j.tics.2021.12.004. (PMID: 10.1016/j.tics.2021.12.00435031211)
Madan, C. R. (2020). Rethinking the definition of episodic memory. Canadian Journal of Experimental Psychology, 74(3), 183–192. https://doi.org/10.1037/cep0000229. (PMID: 10.1037/cep000022933090848)
Maddock, R. J., Casazza, G. A., Fernandez, D. H., & Maddock, M. I. (2016). Acute modulation of cortical glutamate and GABA content by physical activity. The Journal of Neuroscience, 36(8), 2449–2457. https://doi.org/10.1523/JNEUROSCI.3455-15.2016. (PMID: 10.1523/JNEUROSCI.3455-15.2016269116926705493)
McMorris, T. (2016). Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies. Physiology & Behavior, 165, 291–299. https://doi.org/10.1016/j.physbeh.2016.08.011. (PMID: 10.1016/j.physbeh.2016.08.011)
McMorris, T. (2021). The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. International Journal of Psychophysiology, 170, 75–88. https://doi.org/10.1016/j.ijpsycho.2021.10.005. (PMID: 10.1016/j.ijpsycho.2021.10.00534666105)
Menard, C., & Quirion, R. (2012). Group 1 metabotropic glutamate receptor function and its regulation of learning and memory in the aging brain. Frontiers in Pharmacology, 3, 182. https://doi.org/10.3389/fphar.2012.00182. (PMID: 10.3389/fphar.2012.00182230914603469824)
Mier, C. M., & Gibson, A. L. (2004). Evaluation of a treadmill test for predicting the aerobic capacity of firefighters. Occupational Medicine (London), 54(6), 373–378. https://doi.org/10.1093/occmed/kqh008. (PMID: 10.1093/occmed/kqh008)
Morris, N. B., Piil, J. F., Christiansen, L., Flouris, A. D., & Nybo, L. (2021). Prolonged facemask use in the heat worsens dyspnea without compromising motor-cognitive performance. Temperature, 8, 160–165.
Moutoussamy, I., Taconnat, L., Pothier, K., Toussaint, L., & Fay, S. (2022). Episodic memory and aging: Benefits of physical activity depend on the executive resources required for the task. PLoS One, 17(2), e0263919. https://doi.org/10.1371/journal.pone.0263919. (PMID: 10.1371/journal.pone.0263919351802528856534)
Pollock, M. L., Foster, C., Schmidt, D., Hellman, C., Linnerud, A. C., & Ward, A. (1982). Comparative analysis of physiologic responses to three different maximal graded exercise test protocols in healthy women. American Heart Journal, 103(3), 363–373. https://doi.org/10.1016/0002-8703(82)90275-7. (PMID: 10.1016/0002-8703(82)90275-77064770)
Pontifex, M. B., Parks, A. C., O'Neil, P. C., Egner, A. R., Warning, J. T., Pfeiffer, K. A., & Fenn, K. M. (2014). Poorer aerobic fitness relates to reduced integrity of multiple memory systems. Cognitive, Affective, & Behavioral Neuroscience, 14(3), 1132–1141. https://doi.org/10.3758/s13415-014-0265-z. (PMID: 10.3758/s13415-014-0265-z)
Pontifex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks, A. C., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise, 40, 1–22. (PMID: 10.1016/j.psychsport.2018.08.015)
Pyke, W., Ifram, F., Coventry, L., Sung, Y., Champion, I., & Javadi, A. H. (2020). The effects of different protocols of physical exercise and rest on long-term memory. Neurobiology of Learning and Memory, 167, 107128. https://doi.org/10.1016/j.nlm.2019.107128. (PMID: 10.1016/j.nlm.2019.10712831783129)
Rigdon, B., & Loprinzi, P. D. (2019). The association of cardiorespiratory fitness on memory function: Systematic review. Medicina (Kaunas, Lithuania), 55(5). https://doi.org/10.3390/medicina55050127.
Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience and Biobehavioral Reviews, 37(8), 1645–1666. https://doi.org/10.1016/j.neubiorev.2013.06.012. (PMID: 10.1016/j.neubiorev.2013.06.01223806438)
Roig, M., Thomas, R., Mang, C. S., Snow, N. J., Ostadan, F., Boyd, L. A., & Lundbye-Jensen, J. (2016). Time-dependent effects of cardiovascular exercise on memory. Exercise and Sport Sciences Reviews, 44(2), 81–88. https://doi.org/10.1249/JES.0000000000000078. (PMID: 10.1249/JES.000000000000007826872291)
Salas, C. R., Minakata, K., & Kelemen, W. L. (2011). Walking before study enhances free recall but not judgement-of-learning magnitude. Journal of Cognitive Psychology, 23(4), 507–513. (PMID: 10.1080/20445911.2011.532207)
Sanders, A. F. (1997). A summary of resource theories from a behavioral perspective. Biological Psychology, 45(1-3), 5–18. https://doi.org/10.1016/s0301-0511(96)05220-9. (PMID: 10.1016/s0301-0511(96)05220-99083642)
Sanders, A. F. (1998). Elements of human performance: Reaction processes and attention in human skill. Lawrence Erlbaum Associates Publishers.
Saucedo Marquez, C. M., Vanaudenaerde, B., Troosters, T., & Wenderoth, N. (2015). High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. Journal of Applied Physiology (Bethesda, MD: 1985), 119(12), 1363–1373. https://doi.org/10.1152/japplphysiol.00126.2015. (PMID: 10.1152/japplphysiol.00126.201526472862)
Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J. W., Kiens, B., & Nielsen, J. B. (2014). Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiology of Learning and Memory, 116, 46–58. https://doi.org/10.1016/j.nlm.2014.08.004. (PMID: 10.1016/j.nlm.2014.08.00425128877)
Sng, E., Frith, E., & Loprinzi, P. D. (2018). Experimental effects of acute exercise on episodic memory acquisition: Decomposition of multi-trial gains and losses. Physiology & Behavior, 186, 82–84. https://doi.org/10.1016/j.physbeh.2018.01.014. (PMID: 10.1016/j.physbeh.2018.01.014)
Stanley, J., Peake, J. M., & Buchheit, M. (2013). Cardiac parasympathetic reactivation following exercise: Implications for training prescription. Sports Medicine, 43(12), 1259–1277. https://doi.org/10.1007/s40279-013-0083-4. (PMID: 10.1007/s40279-013-0083-423912805)
Suwabe, K., Hyodo, K., Byun, K., Ochi, G., Yassa, M. A., & Soya, H. (2017). Acute moderate exercise improves mnemonic discrimination in young adults. Hippocampus, 27(3), 229–234. https://doi.org/10.1002/hipo.22695. (PMID: 10.1002/hipo.22695279979925927776)
Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3), 297–324. https://doi.org/10.1016/s0001-6918(02)00134-8. (PMID: 10.1016/s0001-6918(02)00134-812595152)
Tomporowski, P. D., Ellis, N. R., & Stephens, R. (1987). The immediate effects of strenuous exercise on free-recall memory. Ergonomics, 30(1), 121–129. https://doi.org/10.1080/00140138708969682. (PMID: 10.1080/001401387089696823830124)
van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875), 1030–1034. https://doi.org/10.1038/4151030a. (PMID: 10.1038/4151030a118755719284568)
Voss, M. W., Weng, T. B., Narayana-Kumanan, K., Cole, R. C., Wharff, C., Reist, L., ... Pierce, G. L. (2020). Acute exercise effects predict training change in cognition and connectivity. Medicine and Science in Sports and Exercise, 52(1), 131-140. https://doi.org/10.1249/MSS.0000000000002115.
West, B. T. (2009). Analyzing longitudinal data with the linear mixed models procedure in SPSS. Evaluation & the Health Professions, 32(3), 207–228. (PMID: 10.1177/0163278709338554)
Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., ... Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597-609. https://doi.org/10.1016/j.nlm.2006.11.003.
Zuniga, K. E., Mueller, M., Santana, A. R., & Kelemen, W. L. (2019). Acute aerobic exercise improves memory across intensity and fitness levels. Memory, 27(5), 628–636. https://doi.org/10.1080/09658211.2018.1546875. (PMID: 10.1080/09658211.2018.154687530427750)
فهرسة مساهمة: Keywords: Cognition; Memory context; Physical activity
تواريخ الأحداث: Date Created: 20221118 Date Completed: 20230427 Latest Revision: 20230513
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9676734
DOI: 10.3758/s13421-022-01373-4
PMID: 36401115
قاعدة البيانات: MEDLINE
الوصف
تدمد:1532-5946
DOI:10.3758/s13421-022-01373-4