دورية أكاديمية

Fast and slow skeletal myosin binding protein-C and aging.

التفاصيل البيبلوغرافية
العنوان: Fast and slow skeletal myosin binding protein-C and aging.
المؤلفون: Perazza LR; Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA, 02215, USA., Wei G; Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA, 02215, USA., Thompson LV; Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA, 02215, USA. lvthomp@bu.edu.
المصدر: GeroScience [Geroscience] 2023 Apr; Vol. 45 (2), pp. 915-929. Date of Electronic Publication: 2022 Nov 21.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer International Publishing Country of Publication: Switzerland NLM ID: 101686284 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2509-2723 (Electronic) Linking ISSN: 25092723 NLM ISO Abbreviation: Geroscience Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Cham : Springer International Publishing, [2017]-
مواضيع طبية MeSH: Myocardium*/pathology , Muscle, Skeletal*/metabolism, Mice ; Animals ; Myosins/metabolism ; Aging
مستخلص: Aging is associated with skeletal muscle strength decline and cardiac diastolic dysfunction. The structural arrangements of the sarcomeric proteins, such as myosin binding protein-C (MyBP-C) are shown to be pivotal in the pathogenesis of diastolic dysfunction. Yet, the role of fast (fMyBP-C) and slow (sMyBP-C) skeletal muscle MyBP-C remains to be elucidated. Herein, we aimed to characterize MyBP-C and its paralogs in the fast tibialis anterior (TA) muscle from adult and old mice. Immunoreactivity preparations showed that the relative abundance of the fMyBP-C paralog was greater in the TA of both adult and old, but no differences were noted between groups. We further found that the expression level of cardiac myosin binding protein-C (cMyBP-C), an important modulator of cardiac output, was lowered by age. Standard SDS-PAGE along with Pro-Q Diamond phosphoprotein staining did not identify age-related changes in phosphorylated MyBP-C proteins from TA and cardiac muscles; however, it revealed that MyBP-C paralogs in fast skeletal and cardiac muscle were highly phosphorylated. Mass spectrometry further identified glycogen phosphorylase, desmin, actin, troponin T, and myosin regulatory light chain 2 as phosphorylated myofilament proteins in both ages. MyBP-C protein-bound carbonyls were determined using anti-DNP immunostaining and found the carbonyl level of fMyBP-C, sMyBP-C, and cMyBP-C to be similar between old and adult animals. In summary, our data showed some differences regarding the MyBP-C paralog expression and identified an age-related reduction of cMyBP-C expression. Future studies are needed to elucidate which are the age-driven post-translational modifications in the MyBP-C paralogs.
(© 2022. The Author(s).)
References: Ravichandran VS, Patel HJ, Pagani FD, Westfall MV. Cardiac contractile dysfunction and protein kinase C-mediated myofilament phosphorylation in disease and aging. J Gen Physiol. 2019;151:1070–80. (PMID: 10.1085/jgp.201912353)
Perazza LR, Brown-Borg HM, Thompson LV. Physiological systems in promoting frailty. Compr Physiol. 2022;12:3575–620. (PMID: 10.1002/cphy.c210034)
Baumann CW, Kwak D, Liu HM, Thompson LV. Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality? J Appl Physiol. 2016;1985(121):1047–52. (PMID: 10.1152/japplphysiol.00321.2016)
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99:427–511. (PMID: 10.1152/physrev.00061.2017)
van der Velden J, Stienen GJM. Cardiac disorders and pathophysiology of sarcomeric proteins. Physiol Rev. 2019;99:381–426. (PMID: 10.1152/physrev.00040.2017)
Li M, Andersson-Lendahl M, Sejersen T, Arner A. Knockdown of fast skeletal myosin-binding protein C in zebrafish results in a severe skeletal myopathy. J Gen Physiol. 2016;147:309–22. (PMID: 10.1085/jgp.201511452)
Geist J, Ward CW, Kontrogianni-Konstantopoulos A. Structure before function: myosin binding protein-C slow is a structural protein with regulatory properties. FASEB J 2018;32:6385–6394.
Lin B, Govindan S, Lee K, Zhao P, Han R, Runte KE, Craig R, Palmer BM, Sadayappan S. Cardiac myosin binding protein-C plays no regulatory role in skeletal muscle structure and function. PLoS ONE. 2013;8:e69671. (PMID: 10.1371/journal.pone.0069671)
Ackermann MA, Kontrogianni-Konstantopoulos A. Myosin binding protein-C slow is a novel substrate for protein kinase A (PKA) and C (PKC) in skeletal muscle. J Proteome Res. 2011;10:4547–55. (PMID: 10.1021/pr200355w)
Ackermann MA, Ward CW, Gurnett C, Kontrogianni-Konstantopoulos A. Myosin binding protein-C slow phosphorylation is altered in Duchenne dystrophy and arthrogryposis myopathy in fast-twitch skeletal muscles. Sci Rep. 2015;5:13235. (PMID: 10.1038/srep13235)
Desai DA, Rao VJ, Jegga AG, Dhandapany PS, Sadayappan S. Heterogeneous distribution of genetic mutations in myosin binding protein-C paralogs. Front Genet. 2022;13:896117. (PMID: 10.3389/fgene.2022.896117)
Thompson LV. Age-related muscle dysfunction. Exp Gerontol. 2009;44:106–11. (PMID: 10.1016/j.exger.2008.05.003)
Snow LM, McLoon LK, Thompson LV. Adult and developmental myosin heavy chain isoforms in soleus muscle of aging Fischer Brown Norway rat. Anat Rec A Discov Mol Cell Evol Biol. 2005;286:866–73. (PMID: 10.1002/ar.a.20218)
Coble J, Schilder RJ, Berg A, Drummond MJ, Rasmussen BB, Kimball SR. Influence of ageing and essential amino acids on quantitative patterns of troponin T alternative splicing in human skeletal muscle. Appl Physiol Nutr Metab. 2015;40:788–96. (PMID: 10.1139/apnm-2014-0568)
Xu Z, Feng X, Dong J, Wang ZM, Lee J, Furdui C, Files DC, Beavers KM, Kritchevsky S, Milligan C, Jin JP, Delbono O, Zhang T. Cardiac troponin T and fast skeletal muscle denervation in ageing. J Cachexia Sarcopenia Muscle. 2017;8:808–23. (PMID: 10.1002/jcsm.12204)
Copeland O, Sadayappan S, Messer AE, Steinen GJ, van der Velden J, Marston SB. Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle. J Mol Cell Cardiol. 2010;49:1003–11. (PMID: 10.1016/j.yjmcc.2010.09.007)
Jacques AM, Copeland O, Messer AE, Gallon CE, King K, McKenna WJ, Tsang VT, Marston SB. Myosin binding protein C phosphorylation in normal, hypertrophic and failing human heart muscle. J Mol Cell Cardiol. 2008;45:209–16. (PMID: 10.1016/j.yjmcc.2008.05.020)
Kooij V, Holewinski RJ, Murphy AM, Van Eyk JE. Characterization of the cardiac myosin binding protein-C phosphoproteome in healthy and failing human hearts. J Mol Cell Cardiol. 2013;60:116–20. (PMID: 10.1016/j.yjmcc.2013.04.012)
Chiao YA, Zhang H, Sweetwyne M, Whitson J, Ting YS, Basisty N, Pino LK, Quarles E, Nguyen NH, Campbell MD, Zhang T, Gaffrey MJ, Merrihew G, Wang L, Yue Y, Duan D, Granzier HL, Szeto HH, Qian WJ, Marcinek D, MacCoss MJ. Rabinovitch P Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice. Elife. 2020;9:e55513.
Ackermann MA, Kerr JP, King B, Ward CW, A. Kontrogianni-Konstantopoulos. Corrigendum: The phosphorylation profile of myosin binding protein-C slow is dynamically regulated in slow-twitch muscles in health and disease. Sci Rep. 2018;8:46969. (PMID: 10.1038/srep46969)
Thompson LV, Durand D, Fugere NA, Ferrington DA. Myosin and actin expression and oxidation in aging muscle. J Appl Physiol. 2006;1985(101):1581–7. (PMID: 10.1152/japplphysiol.00426.2006)
Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev. 2014;33:79–97. (PMID: 10.1002/mas.21381)
Graber TG, Ferguson-Stegall L, Kim JH, Thompson LV. C57BL/6 neuromuscular healthspan scoring system. J Gerontol A Biol Sci Med Sci. 2013;68:1326–36. (PMID: 10.1093/gerona/glt032)
Graber TG, Kim JH, Grange RW, McLoon LK, Thompson LV. C57BL/6 life span study: age-related declines in muscle power production and contractile velocity. Age (Dordr). 2015;37:9773. (PMID: 10.1007/s11357-015-9773-1)
Wei G, Tian N, Siezen R, Schuppan D, Helmerhorst EJ. Identification of food-grade subtilisins as gluten-degrading enzymes to treat celiac disease. Am J Physiol Gastrointest Liver Physiol. 2016;311:G571-580. (PMID: 10.1152/ajpgi.00185.2016)
Li A, Nelson SR, Rahmanseresht S, Braet F, Cornachione AS, Previs SB, O’Leary TS, McNamara JW, Rassier DE, Sadayappan S, Previs MJ, Warshaw DM. Skeletal MyBP-C isoforms tune the molecular contractility of divergent skeletal muscle systems. Proc Natl Acad Sci U S A. 2019;116:21882–92. (PMID: 10.1073/pnas.1910549116)
Hofmann PA, Greaser ML, Moss RL. C-protein limits shortening velocity of rabbit skeletal muscle fibres at low levels of Ca2+ activation. J Physiol. 1991;439:701–15. (PMID: 10.1113/jphysiol.1991.sp018689)
Lin BL, Li A, Mun JY, Previs MJ, Previs SB, Campbell SG, Dos Remedios CG, Tombe PP, Craig R, Warshaw DM, Sadayappan S. Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca. Sci Rep. 2018;8:2604. (PMID: 10.1038/s41598-018-21053-1)
Zhong S, Lowe DA, Thompson LV. Effects of hindlimb unweighting and aging on rat semimembranosus muscle and myosin. J Appl Physiol. 2006;1985(101):873–80. (PMID: 10.1152/japplphysiol.00526.2005)
Kim JH, Torgerud WS, Mosser KH, Hirai H, Watanabe S, Asakura A, Thompson LV. Myosin light chain 3f attenuates age-induced decline in contractile velocity in MHC type II single muscle fibers. Aging Cell. 2012;11:203–12. (PMID: 10.1111/j.1474-9726.2011.00774.x)
Lowe DA, Husom AD, Ferrington DA, Thompson LV. Myofibrillar myosin ATPase activity in hindlimb muscles from young and aged rats. Mech Ageing Dev. 2004;125:619–27. (PMID: 10.1016/j.mad.2004.07.002)
Song T, McNamara JW, Ma W, Landim-Vieira M, Lee KH, Martin LA, Heiny JA, Lorenz JN, Craig R, Pinto JR, Irving T, Sadayappan S. Fast skeletal myosin-binding protein-C regulates fast skeletal muscle contraction. Proc Natl Acad Sci U S A 2021;27;118(17):e2003596118.
Perry MC, Carville SF, Smith IC, Rutherford OM, Newham DJ. Strength, power output and symmetry of leg muscles: effect of age and history of falling. Eur J Appl Physiol. 2007;100:553–61. (PMID: 10.1007/s00421-006-0247-0)
Pannérec A, Springer M, Migliavacca E, Ireland A, Piasecki M, Karaz S, Jacot G, Métairon S, Danenberg E, Raymond F, Descombes P, McPhee JS, Feige JN. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging (Albany NY). 2016;8:712–29. (PMID: 10.18632/aging.100926)
Carter CS, Justice JN, Thompson L. Lipotoxicity, aging, and muscle contractility: does fiber type matter? Geroscience. 2019;41:297–308. (PMID: 10.1007/s11357-019-00077-z)
Baumann C, Kwak D, Thompson L. Sex-specific components of frailty in C57BL/6 mice. Aging-Us. 2019;11:5206–14. (PMID: 10.18632/aging.102114)
Tarpey MD, Amorese AJ, Balestrieri NP, Ryan TE, Schmidt CA, McClung JM, Spangenburg EE. Characterization and utilization of the flexor digitorum brevis for assessing skeletal muscle function. Skelet Muscle. 2018;8:14. (PMID: 10.1186/s13395-018-0160-3)
Kammoun M, Cassar-Malek I, Meunier B, Picard B. A simplified immunohistochemical classification of skeletal muscle fibres in mouse. Eur J Histochem. 2014;58:2254. (PMID: 10.4081/ejh.2014.2254)
Hämäläinen N, Pette D. The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. J Histochem Cytochem. 1993;41:733–43. (PMID: 10.1177/41.5.8468455)
Robinett JC, Hanft LM, Geist J, A. Kontrogianni-Konstantopoulos, and K. S. McDonald. Regulation of myofilament force and loaded shortening by skeletal myosin binding protein C. J Gen Physiol. 2019;151:645–59. (PMID: 10.1085/jgp.201812200)
Giles J, Fitzsimons DP, Patel JR, Knudtsen C, Neuville Z, Moss RL. cMyBP-C phosphorylation modulates the time-dependent slowing of unloaded shortening in murine skinned myocardium. J Gen Physiol 2021;153(3):e202012782.
Tong CW, Nair NA, Doersch KM, Liu Y, Rosas PC. Cardiac myosin-binding protein-C is a critical mediator of diastolic function. Pflugers Arch. 2014;466:451–7. (PMID: 10.1007/s00424-014-1442-1)
El-Armouche A, Pohlmann L, Schlossarek S, Starbatty J, Yeh YH, Nattel S, Dobrev D, Eschenhagen T, Carrier L. Decreased phosphorylation levels of cardiac myosin-binding protein-C in human and experimental heart failure. J Mol Cell Cardiol. 2007;43:223–9. (PMID: 10.1016/j.yjmcc.2007.05.003)
Sadayappan S, Gulick J, Osinska H, Martin LA, Hahn HS, Dorn GW, Klevitsky R, Seidman CE, Seidman JG, Robbins J. Cardiac myosin-binding protein-C phosphorylation and cardiac function. Circ Res. 2005;97:1156–63. (PMID: 10.1161/01.RES.0000190605.79013.4d)
Rosas PC, Warren CM, Creed HA, Trzeciakowski JP, Solaro RJ, Tong CW. Cardiac myosin binding protein-C phosphorylation mitigates age-related cardiac dysfunction: hope for better aging? JACC Basic Transl Sci. 2019;4:817–30. (PMID: 10.1016/j.jacbts.2019.06.003)
Sadayappan S, Gulick J, Osinska H, Barefield D, Cuello F, Avkiran M, Lasko VM, Lorenz JN, Maillet M, Martin JL, Brown JH, Bers DM, Molkentin JD, James J, Robbins J. A critical function for Ser-282 in cardiac Myosin binding protein-C phosphorylation and cardiac function. Circ Res. 2011;109:141–50. (PMID: 10.1161/CIRCRESAHA.111.242560)
Whitson JA, Martín-Pérez M, Zhang T, Gaffrey MJ, Merrihew GE, Huang E, White CC, Kavanagh TJ, Qian WJ, Campbell MD, MacCoss MJ, Marcinek DJ, Villén J, Rabinovitch PS. Elamipretide (SS-31) treatment attenuates age-associated post-translational modifications of heart proteins. Geroscience. 2021;43:2395–412. (PMID: 10.1007/s11357-021-00447-6)
Doh CY, Dominic KL, Swanberg CE, Bharambe N, Willard BB, Li L, Ramachandran R, Stelzer JE. Identification of phosphorylation and other post-translational modifications in the central C4C5 domains of murine cardiac myosin binding protein C. ACS Omega. 2022;7:14189–202. (PMID: 10.1021/acsomega.2c00799)
Gross SM, Lehman SL. Functional phosphorylation sites in cardiac myofilament proteins are evolutionarily conserved in skeletal myofilament proteins. Physiol Genomics. 2016;48:377–87. (PMID: 10.1152/physiolgenomics.00112.2015)
Hoffman NJ, Parker BL, Chaudhuri R, Fisher-Wellman KH, Kleinert M, Humphrey SJ, Yang P, Holliday M, Trefely S, Fazakerley DJ, Stöckli J, Burchfield JG, Jensen TE, Jothi R, Kiens B, Wojtaszewski JF, Richter EA, James DE. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 2015;22:922–35. (PMID: 10.1016/j.cmet.2015.09.001)
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012;3:876. (PMID: 10.1038/ncomms1871)
Migocka-Patrzałek M, Elias M. Muscle glycogen phosphorylase and its functional partners in health and disease. Cells 2021;10(4):883.
Kentish JC, McCloskey DT, Layland J, Palmer S, Leiden JM, Martin AF, Solaro RJ. Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ Res. 2001;88:1059–65. (PMID: 10.1161/hh1001.091640)
Tsukamoto O, Kitakaze M. Biochemical and physiological regulation of cardiac myocyte contraction by cardiac-specific myosin light chain kinase. Circ J. 2013;77:2218–25. (PMID: 10.1253/circj.CJ-13-0627)
Sumandea MP, Vahebi S, Sumandea CA, Garcia-Cazarin ML, Staidle J, Homsher E. Impact of cardiac troponin T N-terminal deletion and phosphorylation on myofilament function. Biochemistry. 2009;48:7722–31. (PMID: 10.1021/bi900516n)
Hortemo KH, Aronsen JM, Lunde IG, Sjaastad I, Lunde PK. Sejersted OM Exhausting treadmill running causes dephosphorylation of sMLC2 and reduced level of myofilament MLCK2 in slow twitch rat soleus muscle. Physiol Rep. 2015;3(2):e12285.
Zhang X, Ma D, Caruso M, Lewis M, Qi Y, Yi Z. Quantitative phosphoproteomics reveals novel phosphorylation events in insulin signaling regulated by protein phosphatase 1 regulatory subunit 12A. J Proteomics. 2014;109:63–75. (PMID: 10.1016/j.jprot.2014.06.010)
Nyström T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 2005;24:1311–7. (PMID: 10.1038/sj.emboj.7600599)
Feng J, Xie H, Meany DL, Thompson LV, Arriaga EA, Griffin TJ. Quantitative proteomic profiling of muscle type-dependent and age-dependent protein carbonylation in rat skeletal muscle mitochondria. J Gerontol A Biol Sci Med Sci. 2008;63:1137–52. (PMID: 10.1093/gerona/63.11.1137)
Barreiro E. Protein carbonylation and muscle function in COPD and other conditions. Mass Spectrom Rev. 2014;33:219–36. (PMID: 10.1002/mas.21394)
Aryal B, Jeong J, Rao VA. Doxorubicin-induced carbonylation and degradation of cardiac myosin binding protein C promote cardiotoxicity. Proc Natl Acad Sci U S A. 2014;111:2011–6. (PMID: 10.1073/pnas.1321783111)
Govindan S, McElligott A, Muthusamy S, Nair N, Barefield D, Martin JL, Gongora E, Greis KD, Luther PK, Winegrad S, Henderson KK, Sadayappan S. Cardiac myosin binding protein-C is a potential diagnostic biomarker for myocardial infarction. J Mol Cell Cardiol. 2012;52:154–64. (PMID: 10.1016/j.yjmcc.2011.09.011)
Patel BG, Wilder T, Solaro RJ. Novel control of cardiac myofilament response to calcium by S-glutathionylation at specific sites of myosin binding protein C. Front Physiol. 2013;4:336. (PMID: 10.3389/fphys.2013.00336)
معلومات مُعتمدة: K07 AG072124 United States AG NIA NIH HHS; R56 AG067724 United States AG NIA NIH HHS
فهرسة مساهمة: Keywords: Aging; Muscle contractility; Phosphorylation
المشرفين على المادة: 0 (myosin-binding protein C)
EC 3.6.4.1 (Myosins)
تواريخ الأحداث: Date Created: 20221121 Date Completed: 20230201 Latest Revision: 20240407
رمز التحديث: 20240407
مُعرف محوري في PubMed: PMC9886727
DOI: 10.1007/s11357-022-00689-y
PMID: 36409445
قاعدة البيانات: MEDLINE
الوصف
تدمد:2509-2723
DOI:10.1007/s11357-022-00689-y