دورية أكاديمية

Markers of senescence are often associated with neuronal differentiation in the developing sensory systems.

التفاصيل البيبلوغرافية
العنوان: Markers of senescence are often associated with neuronal differentiation in the developing sensory systems.
المؤلفون: de Mera-Rodríguez JA; Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain., Álvarez-Hernán G; Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain., Gañán Y; Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain., Solana-Fajardo J; Servicio de Oftalmología, Complejo Hospitalario Universitario de Badajoz, Badajoz, Spain., Martín-Partido G; Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain., Rodríguez-León J; Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain., Francisco-Morcillo J; Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain. morcillo@unex.es.
المصدر: Histology and histopathology [Histol Histopathol] 2023 May; Vol. 38 (5), pp. 493-502. Date of Electronic Publication: 2022 Nov 22.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Histology and Histopathology Country of Publication: Spain NLM ID: 8609357 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1699-5848 (Electronic) Linking ISSN: 02133911 NLM ISO Abbreviation: Histol Histopathol Subsets: MEDLINE
أسماء مطبوعة: Publication: Murcia : Histology and Histopathology
Original Publication: Murcia, Spain : Gutenberg, 1986-
مواضيع طبية MeSH: Cellular Senescence*/physiology , Sense Organs*/metabolism, Reproducibility of Results ; Cell Differentiation ; Biomarkers/metabolism
مستخلص: It has been shown that senescent cells accumulate in transient structures of the embryo that normally degenerate during tissue development. A collection of biomarkers is generally accepted to define senescence in embryonic tissues. The histochemical detection of β-galactosidase activity at pH 6.0 (β-gal-pH6) is the most widely used assay for cellular senescence. Immunohistochemical detection of common mediators of senescence which block cell cycle progression, including p16, p21, p63, p15 or p27, has also been used to characterize senescent cells in the embryo. However, the reliability of this techniques has been discussed in recent publications because non-senescent cells are also labelled during development. Indeed, increased levels of senescent markers promote differentiation over apoptosis in developing neurons, suggesting that machinery used for the establishment of cellular senescence is also involved in neuronal maturation. Notably, it has recently been argued that a comparable state of cellular senescence might be adopted by terminally differentiated neurons. The developing sensory systems provide excellent models for studying if canonical markers of senescence are associated with terminal neuronal differentiation.
(©The Author(s) 2023. Open Access. This article is licensed under a Creative Commons CC-BY International License.)
References: Álvarez-Hernán G., Hernández-Núñez I., Rico-Leo E.M., Marzal A., de Mera-Rodríguez J.A., Rodríguez-León J., Martín-Partido G. and Francisco-Morcillo J. (2020). Retinal differentiation in an altricial bird species, Taeniopygia guttata: An immunohistochemical study. Exp. Eye Res. 190, 107869. (PMID: 31705900)
Álvarez‐hernán G., de Mera‐Rodríguez J. A., Hernández‐núñez I., Marzal A., Gañán Y., Martín‐partido G., Rodríguez-León J. and Francisco-Morcillo J. (2021a). Analysis of programmed cell death and senescence markers in the developing retina of an altricial bird species. Cells 10, 504. (PMID: PMC799693533652964)
Álvarez-Hernán G., Garrido-Jiménez S., Román Á.C., CarvajalGonzález J.M. and Francisco-Morcillo J. (2021b). Distribution of planar cell polarity proteins in the developing avian retina. Exp. Eye Res. 209, 108681. (PMID: 34166683)
Attems J., Walker L. and Jellinger K.A. (2015). Olfaction and aging: A mini-review. Gerontology 61, 485-490. (PMID: 25968962)
Basisty N., Kale A., Jeon O.H., Kuehnemann C., Payne T., Rao C., Holtz A., Shah S., Sharma V., Ferrucci L., Campisi J. and Schilling B. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599. (PMID: PMC696482131945054)
Bejarano-Escobar R., Holguín-Arévalo M.S., Montero J.A., FranciscoMorcillo J. and Martín-Partido G. (2011). Macrophage and microglia ontogeny in the mouse visual system can be traced by the expression of Cathepsins B and D. Dev. Dyn. 240, 1841-1855. (PMID: 21648018)
Bejarano-Escobar R., Blasco M., Durán A.C., Martín-Partido G. and Francisco-Morcillo J. (2013). Chronotopographical distribution patterns of cell death and of lectin-positive macrophages/microglial cells during the visual system ontogeny of the small-spotted catshark Scyliorhinus canicula. J. Anat. 223, 171-184. (PMID: PMC372421023758763)
Bhanu U.M., Mandraju R.K., Bhaskar C. and Kondapi A. K. (2010). Cultured cerebellar granule neurons as an in vitro aging model: Topoisomerase IIβ as an additional biomarker in DNA repair and aging. Toxicol. Vitr. 24, 1935-1945. (PMID: 20708677)
Borgonetti V. and Galeotti N. (2022). Rosmarinic acid reduces microglia senescence: a novel therapeutic aproach for the management of neuropathic pain symptoms. Biomedicines 10, 1468. (PMID: PMC931296735884774)
Bursuker I., Rhodes J.M. and Goldman R. (1982). β‐Galactosidase - An indicator of the maturational stage of mouse and human mononuclear phagocytes. J. Cell. Physiol. 112, 385-390. (PMID: 6813341)
Candal E., Anadón R., Degrip W.J. and Rodríguez-Moldes I. (2005). Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout. Dev. Brain Res. 154, 101-119. (PMID: 15617760)
Carr V.M. and Farbman A.I. (1992). Ablation of the olfactory bulb upregulates the rate of neurogenesis and induces precocious cell death in olfactory epithelium. Exp. Neurol. 115, 55-59. (PMID: 1728573)
Chavarría T., Baleriola J., Mayordomo R., De Pablo F. and De La Rosa E.J. (2013). Early neural cell death is an extensive, dynamic process in the embryonic chick and mouse retina. Sci. World J. 2013, 627240. (PMID: PMC365423923710143)
Chavarría T., Valenciano A.I., Mayordomo R., Egea J., Comella J.X., Hallböök F., de Pablo F. and de la Rosa E.J. (2007). Differential, age-dependent MEK-ERK and PI3K-Akt activation by insulin acting as a survival factor during embryonic retinal development. Dev. Neurobiol. 67, 1777-1788. (PMID: 17659595)
Chen D.D., Peng X., Wang Y., Jiang M., Xue M., Shang G., Liu X., Jia X., Liu B., Lu Y., Mu H., Zhang F. and Hu Y. (2021). HSP90 acts as a senomorphic target in senescent retinal pigmental epithelial cells. Aging (Albany. NY). 13, 21547-21570. (PMID: PMC845759734495872)
Chia C.W., Sherman‐Baust C.A., Larson S.A., Pandey R., Withers R., Karikkineth A. C., Zukley L.M., Campisi J., Egan J.M., Sen R. and Ferrucci L. (2021). Age‐associated expression of p21and p53 during human wound healing. Aging Cell 20, e13354. (PMID: PMC813500733835683)
Cook B., Portera-Cailliau C. and Adler R. (1998). Developmental neuronal death is not a universal phenomenon among cell types in the chick embryo retina. J. Comp. Neurol. 396, 12-19. (PMID: 9623884)
Czarkwiani A. and Yun M.H. (2018). Out with the old, in with the new: senescence in development. Curr. Opin. Cell Biol. 55, 74-80. (PMID: 30007129)
Da Silva-Álvarez S., Lamas-González O., Ferreirós A., González P., Gómez M., García-Caballero T. González-Barcia M., GarcíaGonzalez M.A. and Collado M. (2018). Pkd2 deletion during embryo development does not alter mesonephric programmed cell senescence. Int. J. Dev. Biol. 62, 637-640. (PMID: 30378388)
Da Silva-Álvarez S., Guerra-Varela J., Sobrido-Cameán D., Quelle A., Barreiro-Iglesias A., Sánchez L. and Collado M. (2020). Developmentally-programmed cellular senescence is conserved and widespread in zebrafish. Aging (Albany. NY). 12, 17895-17901. (PMID: PMC758510432991320)
Davaapil H., Brockes J.P. and Yun M.H. (2017). Conserved and novel functions of programmed cellular senescence during vertebrate development. Development 144, 106-114. (PMID: PMC527862727888193)
de Mera-Rodríguez J.A., Álvarez-Hernán G., Gañán Y., Martín-Partido G., Rodríguez-León J. and Francisco-Morcillo J. (2019). Senescence-associated β-galactosidase activity in the developing avian retina. Dev. Dyn. 248, 850-865. (PMID: 31226225)
de Mera-Rodríguez J.A., Álvarez-Hernán G., Gañán Y., Martín-Partido G., Rodríguez-León J. and Francisco-Morcillo J. (2021). Is senescence-associated β-Galactosidase a reliable in vivo marker of cellular senescence during embryonic development? Front. Cell Dev. Biol. 9, 1-12. (PMID: PMC787628933585480)
de Mera-Rodríguez J.A., Álvarez-Hernán G., Gañán Y., Santos-Almeida A., Martín-Partido G., Rodríguez-León J. and Francisco-Morcillo J. (2022). Endogenous pH 6.0 β-Galactosidase activity Is linked to neuronal differentiation in the olfactory epithelium. Cells. 11, 1-13. (PMID: PMC877440335053414)
Deckner M.L., Risling M. and Frisén J. (1997). Apoptotic death of olfactory sensory neurons in the adult rat. Exp. Neurol. 143, 132- 140. (PMID: 9000452)
Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I. and Pereira-Smith O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363-9367. (PMID: PMC409857568133)
Domínguez-Bautista J.A., Acevo-Rodríguez P.S. and Castro-Obregón S. (2021). Programmed cell senescence in the mouse developing spinal cord and notochord. Front. Cell Dev. Biol. 9, 1-15. (PMID: PMC787079333575260)
Frago L.M., Cañón S., de la Rosa E.J., León Y. and Varela-Nieto I. (2003). Programmed cell death in the developing inner ear is balanced by nerve growth factor and insulin-like growth factor I. J. Cell Sci. 116, 475-486. (PMID: 12508109)
Georgakilas A.G., Martin O.A. and Bonner W.M. (2017). p21: A twofaced genome guardian. Trends Mol. Med. 23, 310-319. (PMID: 28279624)
Getchell T.V., Peng X., Green C.P., Stromberg A.J., Chen K.-C., Mattson M.P. and Getchell M.L. (2004). In silico analysis of gene expression profiles in the olfactory mucosae of aging senescenceaccelerated mice. J. Neurosci. Res. 77, 430-452. (PMID: 15248299)
Gibaja A., Aburto M.R., Pulido S., Collado M., Hurlé J.M., Varela-Nieto I. and Magariños M. (2019). TGFβ2-induced senescence during early inner ear development. Sci. Rep. 9, 1-13. (PMID: PMC645982330976015)
Gorgoulis V., Adams P.D., Alimonti A., Bennett D.C., Bischof O., Bishop C., Campisi J., Collado M., Evangelou K., Ferbeyre G., Gil J., Hara E., Krizhanovsky V., Jurk D., Maier A.B., Narita M., Niedernhofer L., Passos J.F., Robbins P.D., Schmitt C.A., Sedivy J., Vougas K., von Zglinicki T., Zhou D., Serrano M. and Demaria M. (2019). Cellular senescence: Defining a path forward. Cell 179, 813-827. (PMID: 31675495)
Graziadei G.A.M., Stanley R.S. and Graziadei P.P.C. (1980). The olfactory marker protein in the olfactory system of the mouse during development. Neuroscience 5, 1239-1252. (PMID: 7402467)
Groh V. and von Mayersbach H. (1981). Histochemical tracing of lysosomal enzymes: Improved preparation technique for acid phosphatase, β-glucuronidase, acid-β-galactosidase, and arylesterase in rat liver. Acta Histochem. 69, 1-11. (PMID: 6795881)
Hall B.M., Balan V., Gleiberman A.S., Strom E., Krasnov P., Virtuoso L.P., Rydkina E., Vujcic S., Balan K., Gitlin I.I., Leonova K.I., Consiglio C.R., Gollnick S.O., Chernova and O.B. Gudkov A.V. (2017). p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany. NY). 9, 1867-1884. (PMID: PMC561198228768895)
Hernández-Segura A., Nehme J. and Demaría M. (2018). Hallmarks of cellular senescence. Trends Cell Biol. 28, 436-453. (PMID: 29477613)
Hjelmeland L.M. (1999). Senescence of the retinal pigmented epithelium. Investig. Ophthalmol. Vis. Sci. 40, 1-2. (PMID: 9888419)
Huang T. and Rivera-Pérez J.A. (2014). Senescence-associated βgalactosidase activity marks the visceral endoderm of mouse embryos but is not indicative of senescence. Genesis 52, 300-308. (PMID: PMC400970324616249)
Jurk D., Wang C., Miwa S., Maddick M., Korolchuk V., Tsolou A., Gonos E.S., Thrasivoulou C., Saffrey M.J., Cameron K. and von Zglinicki T. (2012). Postmitotic neurons develop a p21-dependent senescencelike phenotype driven by a DNA damage response. Aging Cell 11, 996-1004. (PMID: PMC353379322882466)
Knabe W., Süss M. and Kuhn H.J. (2000). The patterns of cell death and of macrophages in the developing forebrain of the tree shrew Tupaia belangeri. Anat. Embryol. (Berl). 201, 157-168. (PMID: 10664177)
Kondo K., Suzukawa K., Sakamoto T., Watanabe K., Kanaya K., Ushio M., Yamaguchi T., Nibu K-I., Kaga K. and Yamasoba T. (2010). Age-related changes in cell dynamics of the postnatal mouse olfactory neuroepithelium: Cell proliferation, neuronal differentiation, and cell death. J. Comp. Neurol. 518, 1962-1975. (PMID: 20394053)
Kondo K., Kikuta S., Ueha R., Suzukawa K. and Yamasoba T. (2020). Age-related olfactory dysfunction: Epidemiology, pathophysiology, and clinical management. Front. Aging Neurosci. 12, 208. (PMID: PMC735864432733233)
Kopp H.G., Hooper A.T., Shmelkov S.V. and Rafii S. (2007). βgalactosidase staining on bone marrow. The osteoclast pitfall. Histol. Histopathol. 22, 971-976. (PMID: 17523074)
Kozlowski M.R. (2012). RPE cell senescence: A key contributor to agerelated macular degeneration. Med. Hypotheses. 78, 505-510. (PMID: 22296808)
Kudlova N., De Sanctis J.B., and Hajduch M. (2022). Cellular senescence: Molecular targets, biomarkers, and senolytic drugs. Int. J. Mol. Sci. 23, 4168. (PMID: PMC902816335456986)
Kurz D.J., Decary S., Hong Y. and Erusalimsky J.D. (2000). Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113, 3613-3622. (PMID: 11017877)
Lamoke F., Shaw S., Yuan J., Ananth S., Duncan M., Martin P. and Bartoli M. (2015). Increased oxidative and nitrative stress accelerates aging of the retinal vasculature in the diabetic retina. PLoS One 10, e0139664. (PMID: PMC460548526466127)
Lee B.Y., Han J.A., Im J.S., Morrone A., Johung K., Goodwin E.C., Kleijer W.J., DiMaio D. and Hwang E.S. (2006). Senescenceassociated β-galactosidase is lysosomal β-galactosidase. Aging Cell 5, 187-195. (PMID: 16626397)
León Y., Sánchez-Galiano S. and Gorospe I. (2004). Programmed cell death in the development of the vertebrate inner ear. Apoptosis 9, 255-264. (PMID: 15258457)
Li L.U., Zhao Y. and Zhang H. (2017). P16INK4a upregulation mediated by TBK1 induces retinal ganglion cell senescence in ischemic injury. Cell Death Dis. 8, 1-12. (PMID: PMC547758728425986)
Liu R. (2022). Aging, cellular senescence, and Alzheimer’s disease. Int. J. Mol. Sci. 23, 1989. (PMID: PMC887450735216123)
Loo A.T., Youngentob S.L., Kent P.F. and Schwob J.E. (1996). The aging olfactory epithelium: Neurogenesis, response to damage, and odorant-induced activity. Int. J. Dev. Neurosci. 14, 881-900. (PMID: 9010732)
López-Luppo M., Catita J., Ramos D., Navarro M., Carretero A., Mendes-Jorge L., Muñoz-Cánoves P., Rodriguez-Baeza A., Nacher V. and Ruberte J. (2017). Cellular senescence is associated with human retinal microaneurysm formation during aging. Investig. Ophthalmol. Vis. Sci. 58, 2832-2842. (PMID: 28570738)
Lorda-Díez C.I., García-Riart B., Montero J.A., Rodríguez-León J., García-Porrero J.A. and Hurlé J.M. (2015a). Apoptosis during embryonic tissue remodeling is accompanied by cell senescence. Aging (Albany. NY). 7, 974-985. (PMID: PMC469406726568417)
Lorda-Díez C.I., Montero J.A., García-Porrero J.A. and Hurlé J.M. (2015b). Interdigital tissue regression in the developing limb of vertebrates. Int. J. Dev. Biol. 59, 55-62. (PMID: 26374526)
Lorda-Díez C.I., Solís-Mancilla M.E., Sánchez-Fernández C., GarcíaPorrero J.A., Hurlé J.M. and Montero J.A. (2019). Cell senescence, apoptosis and DNA damage cooperate in the remodeling processes accounting for heart morphogenesis. J. Anat. 234, 815-829. (PMID: PMC653974930875434)
Lowe S. W. and Sherr C.J. (2003). Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77-83. (PMID: 12573439)
Magariños M., Barajas-Azpeleta R., Varela-Nieto I. and R. Aburto M. (2020). Otic neurogenesis is regulated by TGFβ in a senescenceindependent manner. Front. Cell. Neurosci. 14, 1-9. (PMID: PMC746192632973450)
Mayordomo R., Valenciano A.I., De La Rosa E.J. and Hallböök F. (2003). Generation of retinal ganglion cells is modulated by caspase-dependent programmed cell death. Eur. J. Neurosci. 18, 1744-1750. (PMID: 14622209)
McHugh D. and Gil J. (2018). Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65-77. (PMID: PMC574899029114066)
Mishima K., Handa J.T., Aotaki-Keen A., Lutty G.A., Morse L.S. and Hjelmeland L.M. (1999). Senescence-associated β-galactosidase histochemistry for the primate eye. Investig. Ophthalmol. Vis. Sci. 40, 1590-1593. (PMID: 10359342)
Muñoz-Espín D. and Serrano M. (2014). Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482-496. (PMID: 24954210)
Muñoz-Espín D., Cañamero M., Maraver A., Gómez-López G., Contreras J., Murillo-Cuesta S., Rodríguez-Baeza A., Varela-Nieto I., Ruberte J., Collado M. and Serrano M. (2013). Programmed cell senescence during mammalian embryonic development. Cell 155, 1104-1118. (PMID: 24238962)
Nacarino-Palma A., Rico-Leo E.M., Campisi J., Ramanathan A., González-Rico F.J., Rejano-Gordillo C.M., Ordiales-Talavero A., Merino J.M. and Fernández-Salguero P.M. (2022). Aryl hydrocarbon receptor blocks aging-induced senescence in the liver and fibroblast cells. Aging (Albany. NY). 14, 4281-4304. (PMID: PMC918675935619220)
Nacher V., Carretero A., Navarro M., Armengol C., Llombart C., Rodríguez A., Herrero-Fresneda I., Ayuso E. and Ruberte J. (2006). The quail mesonephros: A new model for renal senescence? J. Vasc. Res. 43, 581-586. (PMID: 17028443)
Nishizaki K., Anniko M., Orita Y., Karita K., Masuda Y. and Yoshino Y. (1998). Programmed cell death in the developing epithelium of the mouse inner ear. Acta Otolaryngol. 118, 96-100. (PMID: 9504171)
Oubaha M., Miloudi K., Dejda A., Guber V., Mawambo G., Germain M.A., Bourdel G., Popovic N., Rezende F.A., Kaufman R.J., Mallette F.A. and Sapieha P. (2016). Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci. Transl. Med. 8, 362ra144. (PMID: 27797960)
Piechota M., Sunderland P., Wysocka A., Nalberczak M., Sliwinska M.A., Radwanska K. and Sikora E. (2016). Is senescenceassociated β-galactosidase a marker of neuronal senescence? Oncotarget 7, 81099-81109. (PMID: PMC534837927768595)
Raffaele M., Kovacovicova K., Bonomini F., Rezzani R., Frohlich J., and Vinciguerra M. (2020). Senescence-like phenotype in post-mitotic cells of mice entering middle age. Aging (Albany. NY). 12, 13979- 13990. (PMID: PMC742551232634782)
Rhinn M., Ritschka B. and Keyes W.M. (2019). Cellular senescence in development, regeneration and disease. Development 146, dev151837. (PMID: 31575608)
Ring N.A.R., Valdivieso K., Grillari J., Redl H. and Ogrodnik M. (2022). The role of senescence in cellular plasticity: Lessons from regeneration and development and implications for age-related diseases. Dev. Cell. 57, 1083-1101. (PMID: 35472291)
Ritschka B., Storer M., Mas A., Heinzmann F., Ortells M.C., Morton J.P., Sansom O.J., Zender L. and Keyes W.M. (2017). The senescenceassociated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172-183. (PMID: PMC532273128143833)
Robinson A.M., Conley D.S., Shinners M.J. and Kern R.C. (2002). Apoptosis in the aging olfactory epithelium. Laryngoscope 112, 1431-1435. (PMID: 12172257)
Rodríguez-Gallardo L., Lineros-Domínguez M.D.C., Francisco-Morcillo J. and Martín-Partido G. (2005). Macrophages during retina and optic nerve development in the mouse embryo: Relationship to cell death and optic fibres. Anat. Embryol. (Berl). 210, 303-316. (PMID: 16217650)
Safwan-Zaiter H., Wagner N., Michiels J.F. and Wagner K.D. (2022). Dynamic spatiotemporal expression pattern of the senescenceassociated factor p16Ink4a in development and aging. Cells. 11, 541. (PMID: PMC883390035159350)
Sánchez-Fernández C., Lorda-Díez C.I., García-Porrero J.A., Montero J.A. and Hurlé J.M. (2019). UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb. Cell Death Dis. 10, 347. (PMID: PMC648403231024001)
Sánchez-Fernández C., Lorda-Díez C.I., Hurlé J.M. and Montero J.A. (2020). The methylation status of the embryonic limb skeletal progenitors determines their cell fate in chicken. Commun. Biol. 3, 1- 12. (PMID: PMC727505232504030)
Sánchez-Fernández C., Lorda-Díez C.I., Duarte-Olivenza C., Hurlé J.M. and Montero J.A. (2021). Histone epigenetic signatures in embryonic limb interdigital cells fated to die. Cells 10, 911. (PMID: PMC807144233921015)
Sanz C., Leon Y., Canon S., Álvarez L., Giráldez F. and Varela-Nieto I. (1999). Pattern of expression of the jun family of transcription factors during the early development of the inner ear: implications in apoptosis. J. Cell Sci. 112, 3967-3974. (PMID: 10547357)
Schafer M.J., Zhang X., Kumar A., Atkinson E.J., Zhu Y., Jachim S., Mazula D.L., Brown A.K., Berning M., Aversa Z., Kotajarvi B., Bruce C.J., Greason K.L., Suri R.M., Tracy R.P., Cummings S.R., White T.A. and LeBrasseur N.K. (2020). The senescence-associated secretome as an indicator of age and medical risk. JCI Insight 5, E133668. (PMID: PMC740624532554926)
Severino J., Allen R.G., Balin S., Balin A. and Cristofalo V.J. (2000). Is β-galactosidase staining a marker of senescence in vitro and in vivo? Exp. Cell Res. 257, 162-171. (PMID: 10854064)
Storer M., Mas A., Robert-Moreno A., Pecoraro M., Ortells M. C., Di Giacomo V., Yosef R., Pilpel N., Krizhanovsky V., Sharpe J. and Keyes W.M. (2013). Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119-1130. (PMID: 24238961)
Ueha R., Shichino S., Ueha S., Kondo K., Kikuta S., Nishijima H., Matsushima K. and Yamasoba T. (2018). Reduction of proliferating olfactory cells and low expression of extracellular matrix genes are hallmarks of the aged olfactory mucosa. Front. Aging Neurosci. 10, 86. (PMID: PMC588095229636678)
Varela-Nieto I., Palmero I. and Magariños M. (2019). Complementary and distinct roles of autophagy, apoptosis and senescence during early inner ear development. Hear. Res. 376, 86-96. (PMID: 30711386)
Villiard É., Denis J.-F., Hashemi F.S., Igelmann S., Ferbeyre G. and Roy S. (2017). Senescence gives insights into the morphogenetic evolution of anamniotes. Biol. Open 6, 891-896. (PMID: PMC548303128500032)
Wagner K.-D. and Wagner N. (2022). The senescence markers p16INK4A, p14ARF/p19ARF, and p21 in organ development and homeostasis. Cells 11, 1966. (PMID: PMC922156735741095)
Wanner E., Thoppil H. and Riabowol K. (2021). Senescence and apoptosis: Architects of mammalian development. Front. Cell Dev. Biol. 8, 1-16. (PMID: PMC784811033537310)
Weng Z., Wang Y., Ouchi T., Liu H., Qiao X., Wu C., Zhao Z., Li L. and Li B. (2022). Mesenchymal stem/stromal cell senescence: Hallmarks, mechanisms, and combating strategies. Stem Cells Transl. Med. 11, 356-371. (PMID: PMC905241535485439)
Zindy F., Quelle D.E., Roussel M.F. and Sherr C.J. (1997). Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15, 203- 211. (PMID: 9244355)
معلومات مُعتمدة: GR18114 Junta de Extremadura; GR21167 Fondo Europeo de Desarrollo Regional; IB18113 Una manera de hacer Europa
المشرفين على المادة: 0 (Biomarkers)
تواريخ الأحداث: Date Created: 20221122 Date Completed: 20230501 Latest Revision: 20230501
رمز التحديث: 20231215
DOI: 10.14670/HH-18-549
PMID: 36412998
قاعدة البيانات: MEDLINE
الوصف
تدمد:1699-5848
DOI:10.14670/HH-18-549