دورية أكاديمية

Cytokinetic diversity in mammalian cells is revealed by the characterization of endogenous anillin, Ect2 and RhoA.

التفاصيل البيبلوغرافية
العنوان: Cytokinetic diversity in mammalian cells is revealed by the characterization of endogenous anillin, Ect2 and RhoA.
المؤلفون: Husser MC; Biology Department, Concordia University, Montreal, Quebec, Canada., Ozugergin I; Biology Department, Concordia University, Montreal, Quebec, Canada., Resta T; Biology Department, Concordia University, Montreal, Quebec, Canada., Martin VJJ; Biology Department, Concordia University, Montreal, Quebec, Canada.; Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada., Piekny AJ; Biology Department, Concordia University, Montreal, Quebec, Canada.; Center for Applied Synthetic Biology, Concordia University, Montreal, Quebec, Canada.; Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Quebec, Canada.
المصدر: Open biology [Open Biol] 2022 Nov; Vol. 12 (11), pp. 220247. Date of Electronic Publication: 2022 Nov 23.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Royal Society Pub Country of Publication: England NLM ID: 101580419 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2046-2441 (Electronic) Linking ISSN: 20462441 NLM ISO Abbreviation: Open Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Royal Society Pub., [2011]-
مواضيع طبية MeSH: Actomyosin*/metabolism , Contractile Proteins*/genetics , Contractile Proteins*/metabolism , Cytokinesis* , Proto-Oncogene Proteins*/genetics , Proto-Oncogene Proteins*/metabolism , rhoA GTP-Binding Protein*/genetics , rhoA GTP-Binding Protein*/metabolism, Humans ; HeLa Cells
مستخلص: Cytokinesis is required to physically separate the daughter cells at the end of mitosis. This crucial process requires the assembly and ingression of an actomyosin ring, which must occur with high fidelity to avoid aneuploidy and cell fate changes. Most of our knowledge of mammalian cytokinesis was generated using over-expressed transgenes in HeLa cells. Over-expression can introduce artefacts, while HeLa are cancerous human cells that have lost their epithelial identity, and the mechanisms controlling cytokinesis in these cells could be vastly different from other cell types. Here, we tagged endogenous anillin, Ect2 and RhoA with mNeonGreen and characterized their localization during cytokinesis for the first time in live human cells. Comparing anillin localization in multiple cell types revealed cytokinetic diversity with differences in the duration and symmetry of ring closure, and the timing of cortical recruitment. Our findings show that the breadth of anillin correlates with the rate of ring closure, and support models where cell size or ploidy affects the cortical organization, and intrinsic mechanisms control the symmetry of ring closure. This work highlights the need to study cytokinesis in more diverse cell types, which will be facilitated by the reagents generated for this study.
References: Mol Biol Cell. 2006 Jan;17(1):43-55. (PMID: 16236794)
Elife. 2016 Oct 10;5:. (PMID: 27719759)
Nature. 2003 Aug 28;424(6952):1074-8. (PMID: 12904818)
Dev Cell. 2002 Jan;2(1):41-54. (PMID: 11782313)
J Cell Biol. 2009 Dec 14;187(6):831-45. (PMID: 20008563)
Elife. 2021 Jun 30;10:. (PMID: 34190040)
Nat Rev Mol Cell Biol. 2019 Aug;20(8):490-507. (PMID: 31147612)
Elife. 2021 Oct 06;10:. (PMID: 34612202)
J Cell Biol. 1995 Oct;131(1):165-78. (PMID: 7559773)
Nat Cell Biol. 2011 Mar;13(3):331-7. (PMID: 21297641)
Dev Cell. 2007 May;12(5):713-25. (PMID: 17488623)
J Cell Biol. 2005 Aug 15;170(4):571-82. (PMID: 16103226)
Genome Res. 2015 Oct;25(10):1581-9. (PMID: 26355004)
Dev Cell. 2019 Jun 17;49(6):894-906.e12. (PMID: 31105010)
EMBO Rep. 2013 Aug;14(8):696-703. (PMID: 23774295)
Sci Rep. 2017 Sep 20;7(1):11999. (PMID: 28931898)
Semin Cell Dev Biol. 2022 Jul;127:100-109. (PMID: 34955355)
Dev Cell. 2007 May;12(5):827-35. (PMID: 17488632)
Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13158-63. (PMID: 16129829)
Dev Biol. 2013 Nov 1;383(1):61-74. (PMID: 24016757)
PLoS One. 2014 Oct 20;9(10):e110689. (PMID: 25329167)
Annu Rev Cell Dev Biol. 2012;28:29-58. (PMID: 22804577)
Nat Methods. 2013 Aug;10(8):715-21. (PMID: 23900254)
J Cell Sci. 2022 Feb 1;135(3):. (PMID: 35022791)
Dev Cell. 2015 May 26;33(4):413-26. (PMID: 25959226)
J Cell Sci. 2006 Jan 1;119(Pt 1):104-14. (PMID: 16352658)
Elife. 2018 Jul 02;7:. (PMID: 29963981)
EMBO J. 1984 Nov;3(11):2687-94. (PMID: 6391916)
Mol Biol Cell. 2020 May 15;31(11):1124-1139. (PMID: 32238082)
Front Cell Dev Biol. 2020 Oct 07;8:575226. (PMID: 33117802)
Exp Cell Res. 2004 May 1;295(2):300-14. (PMID: 15093731)
Nature. 2004 Aug 19;430(7002):908-13. (PMID: 15282614)
Nat Biotechnol. 2016 Feb;34(2):184-191. (PMID: 26780180)
Dev Biol. 2016 Apr 15;412(2):261-77. (PMID: 26923492)
Nat Rev Mol Cell Biol. 2004 Mar;5(3):209-19. (PMID: 14991001)
Cell Death Dis. 2017 May 18;8(5):e2805. (PMID: 28518148)
Front Cell Dev Biol. 2020 Sep 25;8:573393. (PMID: 33102479)
Semin Cell Dev Biol. 2010 Dec;21(9):881-91. (PMID: 20732437)
J Cell Biol. 2020 Jun 1;219(6):. (PMID: 32406907)
Trends Cell Biol. 2005 Dec;15(12):651-8. (PMID: 16243528)
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2119381119. (PMID: 35294282)
Nucleic Acids Res. 2015 Oct 30;43(19):9379-92. (PMID: 26429972)
Elife. 2018 Jul 20;7:. (PMID: 30028292)
J Cell Biol. 2000 Aug 7;150(3):539-52. (PMID: 10931866)
Nat Biotechnol. 2013 Sep;31(9):827-32. (PMID: 23873081)
J Cell Sci. 2007 Oct 15;120(Pt 20):3633-9. (PMID: 17895361)
Dev Cell. 2015 Apr 20;33(2):204-15. (PMID: 25898168)
Cell. 2013 Jul 18;154(2):391-402. (PMID: 23870127)
PLoS Genet. 2017 Feb 21;13(2):e1006625. (PMID: 28222102)
Genome Res. 2014 Jun;24(6):1012-9. (PMID: 24696461)
ACS Synth Biol. 2015 Sep 18;4(9):975-86. (PMID: 25871405)
Annu Rev Biochem. 2016 Jun 2;85:227-64. (PMID: 27145843)
Cold Spring Harb Perspect Biol. 2015 Feb 13;7(4):a015834. (PMID: 25680833)
Curr Biol. 2000 May 18;10(10):611-4. (PMID: 10837228)
Curr Biol. 2008 Jan 8;18(1):30-6. (PMID: 18158243)
Mol Biol Cell. 2010 Jan 1;21(1):50-62. (PMID: 19889842)
Small GTPases. 2022 Jan;13(1):211-224. (PMID: 34405757)
PLoS Biol. 2009 May 5;7(5):e1000111. (PMID: 19468302)
Curr Biol. 2020 Aug 17;30(16):3101-3115.e11. (PMID: 32619481)
J Cell Sci. 2021 Apr 15;134(8):. (PMID: 33912919)
Nat Protoc. 2016 Jan;11(1):118-33. (PMID: 26678082)
Cell Rep. 2016 Dec 6;17(10):2672-2686. (PMID: 27926870)
J Cell Biol. 2019 Apr 1;218(4):1250-1264. (PMID: 30728176)
PLoS Biol. 2009 May 5;7(5):e1000110. (PMID: 19468300)
Mol Biol Cell. 2011 Sep;22(17):3165-75. (PMID: 21737681)
J Cell Sci. 2006 Jul 15;119(Pt 14):3008-19. (PMID: 16803869)
Int Rev Cell Mol Biol. 2017;332:297-345. (PMID: 28526136)
Cytoskeleton (Hoboken). 2018 Dec;75(12):508-521. (PMID: 30123975)
Trends Cell Biol. 2014 May;24(5):285-93. (PMID: 24380642)
PLoS One. 2012;7(4):e34888. (PMID: 22514687)
J Cell Biol. 2018 Mar 5;217(3):837-848. (PMID: 29311228)
J Pathol. 2012 Jan;226(2):338-51. (PMID: 21984283)
J Biol Chem. 2005 Feb 18;280(7):5733-9. (PMID: 15545273)
Mol Biol Cell. 2017 Oct 15;28(21):2854-2874. (PMID: 28814507)
Nat Rev Mol Cell Biol. 2008 Jun;9(6):464-77. (PMID: 18478030)
Development. 2019 Nov 12;146(21):. (PMID: 31582415)
J Cell Sci. 2020 May 14;133(9):. (PMID: 32184265)
Elife. 2017 Nov 06;6:. (PMID: 29106370)
Open Biol. 2022 Nov;12(11):220247. (PMID: 36416720)
Nat Protoc. 2008;3(9):1452-6. (PMID: 18772872)
J Biol Chem. 2018 Jul 6;293(27):10524-10535. (PMID: 29599286)
Methods Mol Biol. 2017;1513:119-140. (PMID: 27807834)
J Cell Biol. 2013 Nov 11;203(3):487-504. (PMID: 24217622)
Annu Rev Biochem. 2019 Jun 20;88:661-689. (PMID: 30649923)
Cell. 2009 May 29;137(5):926-37. (PMID: 19490897)
Science. 2012 Nov 9;338(6108):810-4. (PMID: 23139335)
Genome Res. 2014 Jan;24(1):132-41. (PMID: 24253446)
Mol Biol Cell. 2017 Jun 1;28(11):1409-1411. (PMID: 28559439)
Nature. 2012 Dec 13;492(7428):276-9. (PMID: 23235882)
J Cell Biol. 2008 Jan 28;180(2):285-94. (PMID: 18209105)
Nature. 2017 Oct 19;550(7676):407-410. (PMID: 28931002)
Dev Cell. 2013 Sep 16;26(5):496-510. (PMID: 24012485)
Dev Cell. 2011 Dec 13;21(6):1104-15. (PMID: 22172673)
Small GTPases. 2021 May;12(3):177-187. (PMID: 32013678)
Science. 2013 Feb 15;339(6121):823-6. (PMID: 23287722)
Development. 2005 Jun;132(12):2837-48. (PMID: 15930113)
Nat Protoc. 2013 Nov;8(11):2281-2308. (PMID: 24157548)
Nat Commun. 2021 Apr 23;12(1):2409. (PMID: 33893302)
Cell Rep. 2021 Mar 2;34(9):108805. (PMID: 33657383)
Mol Biol Cell. 2017 Nov 15;28(24):3517-3531. (PMID: 28931593)
Nucleic Acids Res. 2018 May 18;46(9):4677-4688. (PMID: 29672770)
PLoS One. 2015 Apr 24;10(4):e0124633. (PMID: 25909470)
Science. 2013 Feb 15;339(6121):819-23. (PMID: 23287718)
Nature. 2010 Sep 2;467(7311):91-4. (PMID: 20811457)
Methods. 2016 May 15;101:43-55. (PMID: 26707206)
Mol Biol Cell. 2014 Nov 5;25(22):3610-8. (PMID: 25232003)
Nature. 2015 Aug 27;524(7566):489-92. (PMID: 26168397)
Nat Rev Mol Cell Biol. 2019 Nov;20(11):698-714. (PMID: 31263220)
J Cell Sci. 2014 Sep 1;127(Pt 17):3699-710. (PMID: 24994938)
Curr Biol. 2021 Dec 20;31(24):5415-5428.e10. (PMID: 34666005)
Mol Biol Cell. 2019 Jan 1;30(1):96-107. (PMID: 30403552)
Mol Biol Cell. 2016 Apr 15;27(8):1286-99. (PMID: 26912796)
فهرسة مساهمة: Keywords: CRISPR; RhoA; actomyosin; cytokinesis; microscopy
المشرفين على المادة: 9013-26-7 (Actomyosin)
0 (anillin)
0 (Contractile Proteins)
0 (ECT2 protein, human)
0 (Proto-Oncogene Proteins)
EC 3.6.5.2 (rhoA GTP-Binding Protein)
124671-05-2 (RHOA protein, human)
تواريخ الأحداث: Date Created: 20221123 Date Completed: 20221128 Latest Revision: 20230418
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9683116
DOI: 10.1098/rsob.220247
PMID: 36416720
قاعدة البيانات: MEDLINE
الوصف
تدمد:2046-2441
DOI:10.1098/rsob.220247