دورية أكاديمية

Colorimetric detection of Pseudomonas aeruginosa by aptamer-functionalized gold nanoparticles.

التفاصيل البيبلوغرافية
العنوان: Colorimetric detection of Pseudomonas aeruginosa by aptamer-functionalized gold nanoparticles.
المؤلفون: Schmitz FRW; Department of Chemical Engineering and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil., Cesca K; Department of Chemical Engineering and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil. karinacesca@gmail.com., Valério A; Department of Chemical Engineering and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil., de Oliveira D; Department of Chemical Engineering and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil., Hotza D; Department of Chemical Engineering and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil.
المصدر: Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2023 Jan; Vol. 107 (1), pp. 71-80. Date of Electronic Publication: 2022 Nov 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8406612 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0614 (Electronic) Linking ISSN: 01757598 NLM ISO Abbreviation: Appl Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer International, c1984-
مواضيع طبية MeSH: Aptamers, Nucleotide* , Metal Nanoparticles*/chemistry , Biosensing Techniques*/methods, Gold/chemistry ; Colorimetry/methods ; Pseudomonas aeruginosa ; Sodium Chloride/chemistry ; Escherichia coli ; Limit of Detection
مستخلص: Novel rapid methodologies for the detection of bacteria have been recently investigated and applied. In hospital environments, infections by pathogens are very common and can cause serious health problems. Pseudomonas aeruginosa is one of the most common bacteria, which can grow in hospital equipment such as catheters and respirators. Even at low concentrations, it can cause severe infections as it is resistant to antibiotics and other treatments. Based on this subject's relevance, this work aimed to develop a colorimetric biosensor using aptamer-functionalized gold nanoparticles for identifying P. aeruginosa. The detection mechanism is based on the color change of gold nanoparticles (AuNPs) from red to blue-purple through NaCl induction after bacteria incubation and aptamer-target binding. First, AuNPs were synthesized and characterized. The influence of aptamer and sodium chloride concentration on the agglomeration of AuNPs was investigated. Optimization of aptamer concentration and salt addition were performed. The best condition for detection was 5 µM aptamers and 200 mM of NaCl. In this case, P. aeruginosa was detected after 5 h for concentrations from 10 8 to 10 5  CFU mL -1 , being 10 5 and 10 4  CFU mL -1 the detection limit for color change by the naked eye and UV-Vis spectrometry, respectively. In addition, other bacteria such as E. coli, S. typhimurium, and Enterobacteriaceae bacterium were also detected with color changing from red to gray. Finally, it was confirmed that the salt incubation time can be 2 h, and that the ideal aptamer concentration is 5 µM. Thus, the colorimetric analysis can be a simple and fast detection method for P. aeruginosa in the range of 10 8 to 10 5  CFU mL -1 to the naked eye. KEY POINTS: • A new method for rapid detection of Pseudomonas aeruginosa • Aptamers conjugated with gold nanoparticles allow pathogen detection by colorimetry • No need for previous surface modification of nanoparticles.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Alsager OA, Alotaibi KM, Alswieleh AM, Alyamani BJ (2018) Colorimetric aptasensor of vitamin D3: a novel approach to eliminate residual adhesion between aptamers and gold nanoparticles. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-31221-y. (PMID: 10.1038/s41598-018-31221-y)
Amini B, Kamali M, Salouti M, Yaghmaei P (2017) Visual and spectrophotometric detection of Pseudomonas aeruginosa based on gold nanoparticles probe biosensor and endonuclease enzyme. Int J Bio-Inorganic Hybrid Nanomater 6:89–98.
Basso CR (2019) Desenvolvimento de Kits para Rápido Diagnóstico da Dengue utilizando Nanoparticulas de Ouro. Tese, Universidade Estadual Paulista.
Braz VS, Furlan JPR, Passaglia J, Falcão JP, Stehling EG (2018) Genotypic diversity and presence of β-lactamase encoding genes in Pseudomonas aeruginosa isolated from Brazilian soils. Appl Soil Ecol 129:94–97. https://doi.org/10.1016/j.apsoil.2018.05.005. (PMID: 10.1016/j.apsoil.2018.05.005)
Das R, Dhiman A, Kapil A, Bansal V, Sharma TK (2019) Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal Bioanal Chem 411:1229–1238. https://doi.org/10.1007/s00216-018-1555-z. (PMID: 10.1007/s00216-018-1555-z)
Deschaght P, Van Daele S, De Baets F, Vaneechoutte M (2011) PCR and the detection of Pseudomonas aeruginosa in respiratory samples of CF patients A literature review. J Cyst Fibros 10:293–297. https://doi.org/10.1016/j.jcf.2011.05.004. (PMID: 10.1016/j.jcf.2011.05.004)
Elliott CN, Becerra MC, Bennett JC, Graham L, Silvero CMJ, Hallett-Tapley GL (2021) Facile synthesis of antibiotic-functionalized gold nanoparticles for colorimetric bacterial detection. RSC Adv 11:14161–14168. https://doi.org/10.1039/D1RA01316E. (PMID: 10.1039/D1RA01316E)
Etedali P, Behbahani M, Mohabatkar H, Dini G (2022) Field-usable aptamer-gold nanoparticles-based colorimetric sensor for rapid detection of white spot syndrome virus in shrimp. Aquaculture 548:737628. https://doi.org/10.1016/j.aquaculture.2021.737628. (PMID: 10.1016/j.aquaculture.2021.737628)
Famulok M, Mayer G (2011) Aptamer modules as sensors and detectors. Acc Chem Res 44:1349–1358. https://doi.org/10.1021/ar2000293. (PMID: 10.1021/ar2000293)
Figueira CS, dos Santos RP (2017) Biossíntese de nanopartículas de ouro utilizando vegetais. Nanocell News 4:1–5.
Kim HK, Kim HR, Yoon SJ, Lee KB, Kim J, Kim BC (2021) Colorimetric aptasensor for detecting bacillus carboniphilus using aptamer isolated with a non-selex-based method. Chemosensors 9.  https://doi.org/10.3390/chemosensors9060121.
Kim YS, Kim JH, Kim IA, Lee SJ, Jurng J, Gu MB (2010) A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens Bioelectron 26:1644–1649. https://doi.org/10.1016/j.bios.2010.08.046. (PMID: 10.1016/j.bios.2010.08.046)
Krithiga N, Viswanath KB, Vasantha VS, Jayachitra A (2016) Specific and selective electrochemical immunoassay for Pseudomonas aeruginosa based on pectin–gold nano composite. Biosens Bioelectron 79:121–129. https://doi.org/10.1016/j.bios.2015.12.006. (PMID: 10.1016/j.bios.2015.12.006)
Lavu PSR, Mondal B, Ramlal S, Murali HS, Batra HV (2016) Selection and characterization of aptamers using a modified whole cell bacterium SELEX for the detection of Salmonella enterica Serovar Typhimurium. ACS Comb Sci 18:292–301. https://doi.org/10.1021/acscombsci.5b00123. (PMID: 10.1021/acscombsci.5b00123)
Li B, Li X, Dong Y, Wang B, Li D, Shi Y, Wu Y (2017) Colorimetric sensor array based on gold nanoparticles with diverse surface charges for microorganisms identification. Anal Chem 89:10639–10643. https://doi.org/10.1021/acs.analchem.7b02594. (PMID: 10.1021/acs.analchem.7b02594)
Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surfaces B Biointerfaces 58:3–7. https://doi.org/10.1016/j.colsurfb.2006.08.005. (PMID: 10.1016/j.colsurfb.2006.08.005)
Luo R, Zhou X, Chen Y, Tuo S, Jiang F, Niu X, Pan F, Wang H (2019) Lysozyme aptamer-functionalized magnetic nanoparticles for the purification of lysozyme from chicken egg white. Foods 8.  https://doi.org/10.3390/foods.80.20.067.
Mokhtarzadeh A, Ezzati Nazhad Dolatabadi J, Abnous K, de la Guardia M, Ramezani M (2015) Nanomaterial-based cocaine aptasensors. Biosens Bioelectron 68:95–106. https://doi.org/10.1016/j.bios.2014.12.052. (PMID: 10.1016/j.bios.2014.12.052)
Mondal B, Ramlal S, Lavu PS, Bhavanashri N, Kingston J (2018) Highly sensitive colorimetric biosensor for staphylococcal enterotoxin B by a label-free aptamer and gold nanoparticles. Front Microbiol 9:1–8. https://doi.org/10.3389/fmicb.2018.00179. (PMID: 10.3389/fmicb.2018.00179)
Roushani M, Sarabaegi M, Pourahmad F (2019) Impedimetric aptasensor for Pseudomonas aeruginosa by using a glassy carbon electrode modified with silver nanoparticles. Microchim Acta 186.  https://doi.org/10.1007/s00604-019-3858-y.
Sarabaegi M, Roushani M (2021) Rapid and sensitive determination of Pseudomonas aeruginosa by using a glassy carbon electrode modified with gold nanoparticles and aptamer-imprinted polydopamine. Microchem J 168:106388. https://doi.org/10.1016/j.microc.2021.106388. (PMID: 10.1016/j.microc.2021.106388)
Schmitz FRW, Valério A, de Oliveira D, Hotza D (2020) An overview and future prospects on aptamers for food safety. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-020-10747-0.
Shi X, Zhang J, He F (2019) A new aptamer/polyadenylated DNA interdigitated gold electrode piezoelectric sensor for rapid detection of Pseudomonas aeruginosa. Biosens Bioelectron 132:224–229. https://doi.org/10.1016/j.bios.2019.02.053. (PMID: 10.1016/j.bios.2019.02.053)
Sismaet HJ, Pinto AJ, Goluch ED (2017) Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Biosens Bioelectron 97:65–69. https://doi.org/10.1016/j.bios.2017.05.042. (PMID: 10.1016/j.bios.2017.05.042)
Søgaard M, Stender H, Schønheyder HC (2005) Direct identification of major blood culture pathogens, including Pseudomonas aeruginosa and Escherichia coli, by a panel of fluorescence in situ hybridization assays using peptide nucleic acid probes. J Clin Microbiol 43:1947–1949. https://doi.org/10.1128/JCM.43.4.1947-1949.2005. (PMID: 10.1128/JCM.43.4.1947-1949.2005)
Soundy J, Day D (2017) Selection of DNA aptamers specific for live Pseudomonas aeruginosa. PLoS ONE 12:1–11. https://doi.org/10.1371/journal.pone.0185385. (PMID: 10.1371/journal.pone.0185385)
Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403. https://doi.org/10.1016/j.bioeng.2007.06.001. (PMID: 10.1016/j.bioeng.2007.06.001)
Taheri RA, Eskandari K, Negahdary M (2018) An electrochemical dopamine aptasensor using the modified Au electrode with spindle-shaped gold nanostructure. Microchem J 143:243–251. https://doi.org/10.1016/j.microc.2018.08.008. (PMID: 10.1016/j.microc.2018.08.008)
Tang Y, Ali Z, Zou J, Jin G, Zhu J, Yang J, Dai J (2017) Detection methods for Pseudomonas aeruginosa: history and future perspective. RSC Adv 7:51789–51800. https://doi.org/10.1039/C7RA09064A. (PMID: 10.1039/C7RA09064A)
Vaseghi A, Safaie N, Bakhshinejad B, Mohsenifar A, Sadeghizadeh M (2013) Detection of Pseudomonas syringae pathovars by thiol-linked DNA–gold nanoparticle probes. Sensors Actuators B Chem 181:644–651. https://doi.org/10.1016/j.snb.2013.02.018. (PMID: 10.1016/j.snb.2013.02.018)
Verma MS, Rogowski JL, Jones L, Gu FX (2015) Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol Adv 33:666–680. https://doi.org/10.1016/j.biotechadv.2015.03.003. (PMID: 10.1016/j.biotechadv.2015.03.003)
Wang KY, Zeng YL, Yang XY, Li WB, Lan XP (2011) Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 30:273–278. https://doi.org/10.1007/s10096-010-1074-0. (PMID: 10.1007/s10096-010-1074-0)
Wang L, Liu X, Hu X, Song S, Fan C (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun 3780–3782.  https://doi.org/10.1039/b607448k.
Xu Z, Bi X, Huang Y, Che Z, Chen X, Fu M, Tian H, Yang S (2018) Sensitive colorimetric detection of Salmonella enteric serovar typhimurium based on a gold nanoparticle conjugated bifunctional oligonucleotide probe and aptamer. J Food Saf 1–7.  https://doi.org/10.1111/jfs.12482.
Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9:2363–2371. https://doi.org/10.1002/cbic.200800282. (PMID: 10.1002/cbic.200800282)
Zhong Z, Gao R, Chen Q, Jia L (2020) Dual-aptamers labeled polydopamine-polyethyleneimine copolymer dots assisted engineering a fluorescence biosensor for sensitive detection of Pseudomonas aeruginosa in food samples. Spectrochim Acta Part A Mol Biomol Spectrosc 224:117417. https://doi.org/10.1016/j.saa.2019.117417. (PMID: 10.1016/j.saa.2019.117417)
Zhong Z, Gao X, Gao R, Jia L (2018) Selective capture and sensitive fluorometric determination of Pseudomonas aeruginosa by using aptamer modified magnetic nanoparticles. Microchim Acta 185.  https://doi.org/10.1007/s00604-018-2914-3.
فهرسة مساهمة: Keywords: Aptasensor; Bacteria; Biosensor; DNA aptamers; Gold nanoparticles
المشرفين على المادة: 7440-57-5 (Gold)
0 (Aptamers, Nucleotide)
451W47IQ8X (Sodium Chloride)
تواريخ الأحداث: Date Created: 20221123 Date Completed: 20221216 Latest Revision: 20221222
رمز التحديث: 20231215
DOI: 10.1007/s00253-022-12283-5
PMID: 36418544
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0614
DOI:10.1007/s00253-022-12283-5