دورية أكاديمية

Synthesis of TiO 2  graphene oxide-based material for textile effluent decontamination: characterization, kinetic, and mechanism studies.

التفاصيل البيبلوغرافية
العنوان: Synthesis of TiO graphene oxide-based material for textile effluent decontamination: characterization, kinetic, and mechanism studies.
المؤلفون: Dos Santos PNF; Technology Rural Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros St, Dois Irmãos, Zip Code: 52171-900, Recife/PE, Brazil. san_patty@hotmail.com., de Holanda RM; Technology Rural Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros St, Dois Irmãos, Zip Code: 52171-900, Recife/PE, Brazil., de Souza ZSB; Department of Chemical Engineering, Federal University of Pernambuco (UFPE), CidadeUniversitária, 1235 Prof. Moraes Rego AvZip Code: 50670-901, Recife/PE, Brazil.; Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), 1100 Notre-Dame St, Montreal, QC, H3C 1K3, Canada., de Moraes CM; Department of Chemical Engineering, Federal University of Pernambuco (UFPE), CidadeUniversitária, 1235 Prof. Moraes Rego AvZip Code: 50670-901, Recife/PE, Brazil., da Silva MP; Department of Chemical Engineering, Federal University of Pernambuco (UFPE), CidadeUniversitária, 1235 Prof. Moraes Rego AvZip Code: 50670-901, Recife/PE, Brazil., Carvalho MN; Technology Rural Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros St, Dois Irmãos, Zip Code: 52171-900, Recife/PE, Brazil.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Mar; Vol. 30 (11), pp. 30358-30370. Date of Electronic Publication: 2022 Nov 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Decontamination* , Titanium*/chemistry, Catalysis ; Textiles
مستخلص: In this work, a hydrothermal method was proposed to fabricate a nanomaterial composed of titanium dioxide and graphene oxide (10 wt%) (TiO 2 -GO). The GO was synthesized according to the modified Hummers and Offeman method, followed by exfoliation. Several characterization analyses were performed in order to investigate the structure, functional groups, and elemental composition of the nanomaterial. XRD analysis showed that the presence of GO does not change the crystalline structure of TiO 2 . FTIR evidenced the characteristic peaks present in both precursor materials (TiO 2 and GO) and EDX confirmed the presence of GO on the TiO 2 -GO material. The nanomaterial was used as a photocatalyst in the TWW treatment, where the color and COD removal and the decrease of the characteristic peaks presented in the UV-Vis spectrum were investigated. The dosages of TiO 2 -GO and pH were studied to find the optimum operating condition. The results revealed that 0.5 g of photocatalyst with an initial pH of 3 achieve the best results under UV-A radiation. The kinetic test shows a COD removal of 87% after 90 min. The reuse test shows a decrease in COD removal after four cycles attributed to the deposition of some oxidized compounds on the catalyst surface. Finally, the efficiency of the photocatalyst was evaluated under solar radiation and it was shown that despite the good results, the performance of the TiO 2 -GO was better under UV-A radiation.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Adly MS, El-Dafrawy SM, El-Hakam SA (2019) Application of nanostructured graphene oxide/titanium dioxide composites for photocatalytic degradation of rhodamine B and acid green 25 dyes. J Market Res 8:5610–5622. https://doi.org/10.1016/j.jmrt.2019.09.029. (PMID: 10.1016/j.jmrt.2019.09.029)
Ahmed AS, Ahamad T, Ahmad N, Khan MZ (2019) Removal enhancement of acid navy blue dye by GO - TiO2 nanocomposites synthesized using sonication method. Mater Chem Phys 238. https://doi.org/10.1016/j.matchemphys.2019.121906.
Ambaye TG, Hagos K (2020) Photocatalytic and biological oxidation treatment of real textile wastewater. Nanotechnol Environ Eng 5. https://doi.org/10.1007/s41204-020-00094-w.
APHA-AWWA-WEF (1999) Standard methods for the examination of water and wastewater. The Nineteenth and Earlier Editions. 1268 p. American Public Health Association, Washington DC.
Arcanjo GS, Mounteer AH, Bellato CR et al (2018) Heterogeneous photocatalysis using TiO2 modified with hydrotalcite and iron oxide under UV–visible irradiation for color and toxicity reduction in secondary textile mill effluent. J Environ Manage 211:154–163. https://doi.org/10.1016/j.jenvman.2018.01.033. (PMID: 10.1016/j.jenvman.2018.01.033)
Baptisttella AMS, de Araujo CMB, da Silva MP et al (2020) Magnetic Fe3O4-graphene oxide nanocomposite–synthesis and practical application for the heterogeneous photo-Fenton degradation of different dyes in water. Separation Sci Technol (philadelphia) 00:1–14. https://doi.org/10.1080/01496395.2020.1716011. (PMID: 10.1080/01496395.2020.1716011)
Barboza EN, Bezerra Neto F das C, Crisostomo NC et al (2019) Potencialidade da biodegradação de corantes têxteis (Potential of biodegradation of textile dyes). Revista Brasileira de Gestão Ambiental 13(4):14–19. (in Portuguese).
Brandt EMF, Souza CL, Chernicharo CAL (2017) Alternatives to odor and corrosion control in sanitary sewerage systems and treatment plants. Eng Sanit Ambient 22(4):611–623. https://doi.org/10.1590/S1413-41522017145398.
Brasil (2011) Ministério do Meio Ambiente. Resolução n. 430, Ministry of Environment. Resolution n. 430 (in Portuguese).
da Silva LS, Gonçalves MMM, Raddi de Araujo LR (2019) Combined photocatalytic and biological process for textile wastewater treatments. Water Environ Res 91:1490–1497. https://doi.org/10.1002/wer.1143. (PMID: 10.1002/wer.1143)
da Silva MP, de Souza ACA, de Lima Ferreira LE et al (2021) Photodegradation of reactive black 5 and raw textile wastewater by heterogeneous photo-Fenton reaction using amino-Fe3O4-functionalized graphene oxide as nanocatalyst. Environ Adv 4:100064. https://doi.org/10.1016/j.envadv.2021.100064. (PMID: 10.1016/j.envadv.2021.100064)
da Silva MP, de Souza ZSB, Cavalcanti JVFL et al (2020) Adsorptive and photocatalytic activity of Fe3O4-functionalized multilayer graphene oxide in the treatment of industrial textile wastewater. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10926-6. (PMID: 10.1007/s11356-020-10926-6)
de Souza ZSB, Silva MP, Fraga TJM, Motta Sobrinho MA (2021) A comparative study of photo-Fenton process assisted by natural sunlight, UV-A, or visible LED light irradiation for degradation of real textile wastewater: factorial designs, kinetics, cost assessment, and phytotoxicity studies. Environ Sci Pollut Res 28:23912–23928. https://doi.org/10.1007/s11356-020-12106-y. (PMID: 10.1007/s11356-020-12106-y)
Domingues FS, Geraldino HCL, de Freitas TKF, S, et al (2021) Photocatalytic degradation of real textile wastewater using carbon black-Nb2O5 composite catalyst under UV/Vis irradiation. Environ Technol (united Kingdom) 42:2335–2349. https://doi.org/10.1080/09593330.2019.1701565. (PMID: 10.1080/09593330.2019.1701565)
Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8:553–597. https://doi.org/10.1016/S1093-0191(03)00031-5. (PMID: 10.1016/S1093-0191(03)00031-5)
Hassani A, Eghbali P, Metin Ö (2018) Sonocatalytic removal of methylene blue from water solution by cobalt ferrite/mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4) nanocomposites: response surface methodology approach. Environ Sci Pollut Res 25:32140–32155. https://doi.org/10.1007/s11356-018-3151-3. (PMID: 10.1007/s11356-018-3151-3)
Hossain L, Sarker SK, Khan MS (2018) Evaluation of present and future wastewater impacts of textile dyeing industries in Bangladesh. Environ Dev 26:23–33. https://doi.org/10.1016/j.envdev.2018.03.005. (PMID: 10.1016/j.envdev.2018.03.005)
Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017. (PMID: 10.1021/ja01539a017)
Isari AA, Payan A, Fattahi M et al (2018) Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO 2 anchored on reduced graphene oxide (Fe-TiO 2 /rGO): characterization and feasibility, mechanism and pathway studies. Appl Surf Sci 462:549–564. https://doi.org/10.1016/j.apsusc.2018.08.133. (PMID: 10.1016/j.apsusc.2018.08.133)
John D, Rajalakshmi AS, Lopez RM, Achari VS (2020) TiO2-reduced graphene oxide nanocomposites for the trace removal of diclofenac. SN Appl Sci 2:1–16. https://doi.org/10.1007/s42452-020-2662-y. (PMID: 10.1007/s42452-020-2662-y)
Karim AV, Hassani A, Eghbali P, Nidheesh PV (2022) Nanostructured modified layered double hydroxides (LDHs)-based catalysts: a review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. Curr Opin Solid State Mater Sci 26. https://doi.org/10.1016/j.cossms.2021.100965.
Kaur H, Dahake R, Maddigapu PR et al (2020) Enhanced photocatalytic degradation of antimicrobial triclosan using rGO–TiO2 composite under natural solar illumination. J Mater Sci: Mater Electron 31:6045–6058. https://doi.org/10.1007/s10854-020-03156-6. (PMID: 10.1007/s10854-020-03156-6)
Khan F, Khan MS, Kamal S et al (2020) Recent advances in graphene oxide and reduced graphene oxide based nanocomposites for the photodegradation of dyes. J Mater Chem C Mater 8:15940–15955. https://doi.org/10.1039/d0tc03684f. (PMID: 10.1039/d0tc03684f)
Khavar AHC, Moussavi G, Mahjoub AR (2018) The preparation of TiO2@rGO nanocomposite efficiently activated with UVA/LED and H2O2 for high rate oxidation of acetaminophen: catalyst characterization and acetaminophen degradation and mineralization. Appl Surf Sci 440:963–973. https://doi.org/10.1016/j.apsusc.2018.01.238.
Kurniawan TA, Mengting Z, Fu D, et al (2020) Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. J Environ Manage 270. https://doi.org/10.1016/j.jenvman.2020.110871.
Leal Filho W, Ellams D, Han S et al (2019) A review of the socio-economic advantages of textile recycling. J Clean Prod 218:10–20. (PMID: 10.1016/j.jclepro.2019.01.210)
Ma D, Yi H, Lai C et al (2021) Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 275:1–22. (PMID: 10.1016/j.chemosphere.2021.130104)
Madihi-Bidgoli S, Asadnezhad S, Yaghoot-Nezhad A, Hassani A (2021) Azurobine degradation using Fe2O3@multi-walled carbon nanotube activated peroxymonosulfate (PMS) under UVA-LED irradiation: performance, mechanism and environmental application. J Environ Chem Eng 9. https://doi.org/10.1016/j.jece.2021.106660.
Metcalf & Eddy Inc., Tchobanoglous G, Burton FL, Tsuchihashi R, Stensel HD (2013) Wastewater engineering: Treatment and resource recovery (5th ed.). McGraw-Hill Professional.
Montagner CC, Vidal C, Acayaba RD (2017) Contaminantes emergentes em matrizes aquáticas do Brasil: Cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Quim Nova 40:1094–1110.
Patel H, Vashi RT (2015) Characterization and column adsorptive treatment for cod and color removal using activated neem leaf powder from textile wastewater. J Urban Environ Eng 9:45–53. https://doi.org/10.4090/juee.2015.v9n1.045053. (PMID: 10.4090/juee.2015.v9n1.045053)
Pizato E, Lopes AC, Rocha RDC et al (2017) Caracterização de efluente têxtil e avaliação da capacidade de remoção de cor utilizando o fungo Lasiodiplodia theobromae MMPI. Engenharia Sanitaria e Ambiental 22:1027–1035. https://doi.org/10.1590/S1413-41522017121743. (PMID: 10.1590/S1413-41522017121743)
Ramírez-Malule H, Quiñones-Murillo DH, Manotas-Duque D (2020) Emerging contaminants as global environmental hazards. Bibliometric Anal Emerg Contam 6:179–193. https://doi.org/10.1016/j.emcon.2020.05.001. (PMID: 10.1016/j.emcon.2020.05.001)
Rong X, Qiu F, Zhang C et al (2015) Preparation, characterization and photocatalytic application of TiO2-graphene photocatalyst under visible light irradiation. Ceram Int 41:2502–2511. https://doi.org/10.1016/j.ceramint.2014.10.072. (PMID: 10.1016/j.ceramint.2014.10.072)
Rtimi S, Giannakis S, Bensimon M et al (2016) Supported TiO2 films deposited at different energies: implications of the surface compactness on the catalytic kinetics. Appl Catal B 191:42–52. https://doi.org/10.1016/j.apcatb.2016.03.019. (PMID: 10.1016/j.apcatb.2016.03.019)
Rtimi S, Pulgarin C, Sanjines R, Kiwi J (2015) Kinetics and mechanism for transparent polyethylene-TiO2 films mediated self-cleaning leading to MB dye discoloration under sunlight irradiation. Appl Catal B 162:236–244. https://doi.org/10.1016/j.apcatb.2014.05.039. (PMID: 10.1016/j.apcatb.2014.05.039)
Tolosana-Moranchel Á, Manassero A, Satuf ML, et al (2019) TiO2-rGO photocatalytic degradation of an emerging pollutant: kinetic modelling and determination of intrinsic kinetic parameters. J Environ Chem Eng 7. https://doi.org/10.1016/j.jece.2019.103406.
Touati A, Hammedi T, Najjar W et al (2016) Photocatalytic degradation of textile wastewater in presence of hydrogen peroxide: effect of cerium doping titania. J Ind Eng Chem 35:36–44. https://doi.org/10.1016/j.jiec.2015.12.008. (PMID: 10.1016/j.jiec.2015.12.008)
Urbas K, Aleksandrzak M, Jedrzejczak M, et al (2014) Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility. Nanoscale Res Lett 9. https://doi.org/10.1186/1556-276X-9-656.
Von Sperling M (1996) Princípios básicos do tratamento de esgotos (Basic principles of sewage treatment). 1 a , 211 p, DESA-UFMG, Belo Horizonte, Brazil. (in Portuguese).
Wang H, Li X, Zhao X et al (2022) A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chin J Catal 43:178–214. (PMID: 10.1016/S1872-2067(21)63910-4)
Wang W, Xiao K, Zhu L et al (2017) Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation. RSC Adv 7:21287–21297. https://doi.org/10.1039/c6ra28224e. (PMID: 10.1039/c6ra28224e)
Xu H, Sun S, Jiang S et al (2018) Effect of pretreatment on microstructure and photocatalytic activity of kaolinite/TiO2 composite. J Solgel Sci Technol 87:676–684. https://doi.org/10.1007/s10971-018-4760-5. (PMID: 10.1007/s10971-018-4760-5)
Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068. (PMID: 10.1002/adma.201001068)
معلومات مُعتمدة: 88887.616594/2021-00 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; IBPG-1816-3.06/19 Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
فهرسة مساهمة: Keywords: Advanced oxidation processes; Heterogeneous photocatalysis; Laundry effluent; Nanomaterial; Wastewater treatment
المشرفين على المادة: 15FIX9V2JP (titanium dioxide)
0 (graphene oxide)
D1JT611TNE (Titanium)
تواريخ الأحداث: Date Created: 20221126 Date Completed: 20230310 Latest Revision: 20230310
رمز التحديث: 20230310
DOI: 10.1007/s11356-022-24179-y
PMID: 36434462
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-022-24179-y