دورية أكاديمية

Electrophoretic mobilization in capillary isoelectric focusing by a weak acid or an acidic ampholyte as catholyte assessed by computer simulation.

التفاصيل البيبلوغرافية
العنوان: Electrophoretic mobilization in capillary isoelectric focusing by a weak acid or an acidic ampholyte as catholyte assessed by computer simulation.
المؤلفون: Thormann W; Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
المصدر: Electrophoresis [Electrophoresis] 2023 Apr; Vol. 44 (7-8), pp. 656-666. Date of Electronic Publication: 2022 Dec 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 8204476 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-2683 (Electronic) Linking ISSN: 01730835 NLM ISO Abbreviation: Electrophoresis Subsets: MEDLINE
أسماء مطبوعة: Publication: : Weinheim : Wiley-VCH
Original Publication: [Weinheim, Germany] : Verlag Chemie, [1980-
مواضيع طبية MeSH: Ampholyte Mixtures*/chemistry , Capillary Isoelectric Focusing*, Computer Simulation ; Isoelectric Focusing/methods ; Aspartic Acid ; Glutamic Acid ; Acetates ; Hydrogen-Ion Concentration
مستخلص: Capillary isoelectric focusing (CIEF) with cationic electrophoretic mobilization induced via replacing the catholyte with the anolyte or a solution of another acid or amino acid was investigated by computer simulation for a wide range pH gradient bracketed between two amphoteric spacers and short electrode vials with a higher id than the capillary. Dynamic simulations provide insight into the complexity of the mobilizing process in a hitherto inaccessible way. The electrophoretic mobilizing process begins with the penetration of the mobilizing compound through the entire capillary, is followed by a gradual or steplike decrease of pH, and ends in an environment with a non-homogenous solution of the mobilizer. Analytes do not necessarily pass the point of detection in the order of decreasing pI values. Cationic mobilization encompasses an inherent zone dispersing and refocusing process toward the capillary end. This behavior is rather strong with phosphoric acid and citric acid, moderate with aspartic acid, glutamic acid (GLU), formic acid, and acetic acid and less pronounced in the absence of the cathodic spacer. The data reveal that optical detectors should not be placed before 90% of capillary length. Aspartic acid, GLU, formic acid, and acetic acid provide an environment with a continuously decreasing pH that explains their successful use in optimized two-step CIEF protocols.
(© 2022 Wiley-VCH GmbH.)
References: Hjertén S. Isoelectric focusing in capillaries. In: Grossman PD, Colburn JC, editors. Capillary electrophoresis, theory and practice. San Diego: Academic Press; 1992. p. 191-214.
Pritchett TJ. Capillary isoelectric focusing of proteins. Electrophoresis. 1996;17:1195-201.
Rodriguez-Diaz R, Wehr T, Zhu M. Capillary isoelectric focusing. Electrophoresis. 1997;18:2134-44.
Righetti PG, Gelfi C, Conti M. Current trends in capillary isoelectric focusing of proteins. J Chromatogr B. 1997;699:91-104.
Shimura K. Recent advances in capillary isoelectric focusing: 1997-2001. Electrophoresis. 2002;23:3847-57.
Kilár F. Recent applications of capillary isoelectric focusing. Electrophoresis. 2003;24:3908-16.
Shimura K. Recent advances in IEF in capillary tubes and microchips. Electrophoresis. 2009;30:11-28.
Hühner J, Lämmerhofer M, Neusüß C. Capillary isoelectric focusing-mass spectrometry: coupling strategies and applications. Electrophoresis. 2015;36:2670-86.
Hjertén S, Zhu M. Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. J Chromatogr. 1985;346:265-70.
Hjertén S, Liao J, Yao K. Theoretical and experimental study of high-performance electrophoretic mobilization of isoelectrically focused protein zones. J Chromatogr. 1987;387:127-38.
Thormann W, Breadmore MC, Caslavska J, Mosher RA. Dynamic computer simulations of electrophoresis: a versatile research and teaching tool. Electrophoresis. 2010;31:726-54.
Thormann W, Mosher RA. Instabilities of the pH gradient in carrier ampholyte-based isoelectric focusing: elucidation of the contributing electrokinetic processes by computer simulation. Electrophoresis. 2021;42:814-33.
Thormann W, Mosher RA. Dynamic computer simulations of electrophoresis: 2010-2020. Electrophoresis. 2022;43:10-36.
Thormann W, Mosher RA. High-resolution computer simulation of electrophoretic mobilization in isoelectric focusing. Electrophoresis. 2008;29:1676-86.
Thormann W, Mosher RA. High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: focusing with concurrent electrophoretic mobilization is an isotachophoretic process. Electrophoresis. 2006;27:968-83.
Takácsi-Nagy A, Kilár F, Thormann W. The effect of pH adjusted electrolytes on capillary isoelectric focusing assessed by high-resolution dynamic computer simulation. Electrophoresis. 2022;43:669-78.
Thormann W, Caslavska J, Mosher RA. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing. J Chromatogr A. 2007;1155:154-63.
Thormann W, Zhang C-X, Caslavska J, Gebauer P, Mosher RA. Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems. Anal Chem. 1998;70:549-62.
Hruška V, Jaroš M, Gaš B. Simul 5 - free dynamic simulator of electrophoresis. Electrophoresis. 2006;27;984-91.
Tentori AM, Herr AE. Performance implications of chemical mobilization after microchannel IEF. Electrophoresis. 2014;35:1453-60.
Hruška V, Gaš B, Vigh G. Simulation of desalting that occurs during isoelectric trapping separations. Electrophoresis. 2009;30:433-43.
Gaš B, Bravenec P. Simul 6: a fast dynamic simulator of electromigration. Electrophoresis. 2021;42:1291-99.
Bahga SS, Bercovici M, Santiago JG. Robust and high-resolution simulations of nonlinear electrokinetic processes in variable cross-section channels. Electrophoresis. 2012;33:3036-51.
Chou Y, Yang R-J. Simulations of IEF in microchannel with variable cross-sectional area. Electrophoresis. 2009;30:819-30.
Ansorge M, Gaš B, Boublík M, Malý M, Šteflová J, Hruška V, et al. CE determination of the thermodynamic pKa values and limiting ionic mobilities of 14 low molecular mass UV absorbing ampholytes for accurate characterization of the pH gradient in carrier ampholytes-based IEF and its numeric simulation. Electrophoresis. 2020;41:514-22.
Mack S, Cruzado-Park I, Chapman J, Ratnayake C, Vigh G. A systematic study in CIEF: defining and optimizing experimental parameters critical to method reproducibility and robustness. Electrophoresis. 2009;30:4049-58.
Bonn R, Rampai S, Rae T, Fishpaugh J. CIEF method optimization: development of robust and reproducible protein reagent characterization in the clinical immunodiagnostic industry. Electrophoresis. 2013;32:825-32.
Kristl T, Stutz H. Comparison of different mobilization strategies for capillary isoelectric focusing of ovalbumin variants. J Sep Sci. 2015;38:148-56.
Duša F, Moravcová D, Šlais K. Low-molecular-mass nitrophenol-based compounds suitable for the effective tracking of pH gradient in isoelectric focusing. Anal Chim Acta. 2019;1076:144-53.
Wang L, Bo T, Zhang Z, Wang G, Tong W, Chen DDY. High resolution capillary isoelectric focusing mass spectrometry analysis of peptides, proteins, and monoclonal antibodies with a flow-through microvial interface. Anal Chem. 2018;90:9495-503.
Mack S, Arnold D, Bogdan G, Bousse L, Danan L, Dolnik V, et al. A novel microchip-based imaged CIEF-MS system for comprehensive characterization and identification of biopharmaceutical charge variants. Electrophoresis. 2019;40:3084-91.
Zhu M, Rodriguez R, Wehr T. Optimizing separation parameters in capillary isoelectric focusing. J Chromatogr. 1991;559:479-88.
Manabe T, Miyamoto H, Iwasaki A. Effects of catholytes on the mobilization of proteins after capillary isoelectric focusing. Electrophoresis. 1997;18:92-7.
فهرسة مساهمة: Keywords: capillary isoelectric focusing; chemical mobilization; computer simulation; electrophoretic mobilization
المشرفين على المادة: 0 (Ampholyte Mixtures)
0YIW783RG1 (formic acid)
30KYC7MIAI (Aspartic Acid)
3KX376GY7L (Glutamic Acid)
0 (Acetates)
تواريخ الأحداث: Date Created: 20221130 Date Completed: 20230419 Latest Revision: 20230420
رمز التحديث: 20230421
DOI: 10.1002/elps.202200262
PMID: 36448503
قاعدة البيانات: MEDLINE
الوصف
تدمد:1522-2683
DOI:10.1002/elps.202200262