دورية أكاديمية

Synthesis of N-Glycosides by Silver-Assisted Gold Catalysis.

التفاصيل البيبلوغرافية
العنوان: Synthesis of N-Glycosides by Silver-Assisted Gold Catalysis.
المؤلفون: Chakraborty S; Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-, 411 008, MH, India., Mishra B; Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-, 411 008, MH, India., Kumar Das P; Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-, 411 008, MH, India., Pasari S; Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-, 411 008, MH, India., Hotha S; Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-, 411 008, MH, India.
المصدر: Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2023 Feb 01; Vol. 62 (6), pp. e202214167. Date of Electronic Publication: 2022 Dec 28.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 0370543 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3773 (Electronic) Linking ISSN: 14337851 NLM ISO Abbreviation: Angew Chem Int Ed Engl Subsets: MEDLINE
أسماء مطبوعة: Publication: <2004-> : Weinheim : Wiley-VCH
Original Publication: Weinheim/Bergstr. : New York, : Verlag Chemie ; Academic Press, c1962-
مواضيع طبية MeSH: Glycosides*/chemistry , Nucleosides*/chemistry, Silver ; Gold/chemistry ; Asparagine ; Glycosylation ; Catalysis
مستخلص: The synthesis of N-glycosides from stable glycosyl donors in a catalytic fashion is still challenging, though they exist ubiquitously in DNA, RNA, glycoproteins, and other biological molecules. Herein, silver-assisted gold-catalyzed activation of alkynyl glycosyl carbonate donors is shown to be a versatile approach for the synthesis of purine and pyrimidine nucleosides, asparagine glycosides and quinolin-2-one N-glycosides. Thus synthesized nucleosides were subjected to the oxidation-reduction sequence for the conversion of Ribf- into Araf- nucleosides, giving access to nucleosides that are otherwise difficult to synthesize. Furthermore, the protocol is demonstrated to be suitable for the synthesis of 2'-modified nucleosides in a facile manner. Direct attachment of an asparagine-containing dipeptide to the glucopyranose and subsequent extrapolation to afford the dipeptide disaccharide unit of chloroviruses is yet another facet of this endeavor.
(© 2022 Wiley-VCH GmbH.)
References: .
R. V. Sticks, S. J. Williams in Carbohydrates: The Essential Molecules of Life, 2nd ed., Elsevier, Amsterdam, 2009;.
S. Benoff, Mol. Hum. Reprod. 1997, 3, 599-637;.
L. Cipolla, A. C. Araújo, D. Bini, L. Gabrielli, L. Russo, N. Shaikh, Expert Opin. Drug Discovery 2010, 5, 721-737;.
D. H. Dube, C. R. Bertozzi, Nat. Rev. Drug Discovery 2005, 4, 477-488;.
H. E. Murrey, L. C. Hsieh-Wilson, Chem. Rev. 2008, 108, 1708-1731.
C. I. C. Crucho, P. Correia-da-Silva, K. T. Petrova, M. T. Barros, Carbohydr. Res. 2015, 402, 124-132.
 .
Y. Yang, B. Yu, Chem. Rev. 2017, 117, 12281-12356;.
M. Panza, S. G. Pistorio, K. J. Stine, A. V. Demchenko, Chem. Rev. 2018, 118, 8105-8150;.
R. Sangwan, A. Khanam, P. K. Mandal, Eur. J. Org. Chem. 2020, 5949-5977.
B. Roy, A. Depaix, C. Périgaud, S. Peyrottes, Chem. Rev. 2016, 116, 7854-7897.
 .
X. Zhu, R. R. Schmidt, Angew. Chem. Int. Ed. 2009, 48, 1900-1934;.
Angew. Chem. 2009, 121, 1932-1967;.
S. Adhikari, X. Li, J. Zhu, J. Carbohydr. Chem. 2013, 32, 336-359;.
M. J. McKay, H. M. Nguyen, ACS Catal. 2012, 2, 1563-1595;.
R. Das, B. Mukhopadhyay, ChemistryOpen 2016, 5, 40-1-433;.
D. Crich, Acc. Chem. Res. 2010, 43, 1144-1153;.
B. Capon, S. P. McManus, Neighbouring Group Participation, Plenum Press, New York, 1976.
Q. Zhang, J. Sun, Y. Zhu, F. Zhang, B. Yu, Angew. Chem. Int. Ed. 2011, 50, 4933-4936;.
Angew. Chem. 2011, 123, 5035-5038.
 .
U. Niedballa, H. Vorbrüggen, Angew. Chem. Int. Ed. Engl. 1970, 9, 461-462;.
Angew. Chem. 1970, 82, 449-450;.
T. Nishimura, B. Shimizu, I. Iwai, Chem. Pharm. Bull. 1963, 11, 1470-1472.
 .
P. Li, H. He, Y. Zhang, R. Yang, L. Xu, Z. Chen, Y. Huang, L. Bao, G. Xiao, Nat. Commun. 2020, 11, 405;.
B. V. Rao, S. Manmode, S. Hotha, J. Org. Chem. 2015, 80, 1499-1505;.
Y. Wang, H. Yao, M. Hua, Y. Jiao, H. He, M. Liu, N. Huang, K. Zhu, J. Org. Chem. 2020, 85, 7485-7493.
 .
H. Tanaka, Y. Iwata, D. Takahashi, M. Adachi, T. Takahashi, J. Am. Chem. Soc. 2005, 127, 1630-1631;.
Y. Li, X. Yang, Y. Liu, C. Zhu, Y. Yang, B. Yu, Chem. Eur. J. 2010, 16, 1871-1882;.
Y. Kobayashi, Y. Nakatsuji, S. Li, S. Tsuzuki, Y. Takemoto, Angew. Chem. Int. Ed. 2018, 57, 3646-3650;.
Angew. Chem. 2018, 130, 3708-3712.
T. T. H. Luong, J.-D. Brion, E. Lescop, M. Alami, S. Messaoudi, Org. Lett. 2016, 18, 2126-2129.
B. Mishra, M. Neralkar, S. Hotha, Angew. Chem. Int. Ed. 2016, 55, 7786-7791;.
Angew. Chem. 2016, 128, 7917-7922.
 .
M. Heuckendorff, H. D. Pramthilake, P. Pornsuriyasak, A. Ø Madsen, C. M. Pedersen, M. Bols, A. V. Demchenko, Org. Lett. 2013, 15, 4904-4907;.
C. M. Pedersen, L. U. Nordstrøm, M. Bols, J. Am. Chem. Soc. 2007, 129, 9222-9235.
M. Dalziel, M. Crispin, C. N. Scanlan, N. Zitzmann, R. A. Dwek, Science 2014, 343, 1235681.
See Supporting Information.
 .
C. De Castro, T. Klose, I. Speciale, R. Lanzett, A. Molinaro, J. L. Van Etten, M. G. Rossmann, Proc. Natl. Acad. Sci. USA 2018, 118, E44;.
C. De Castro, I. Speciale, G. Duncan, D. D. Dunigan, I. Agarkova, R. Lanzetta, L. Sturiale, A. Palmigiano, D. Garozzo, A. Molinaro, M. Tonetti, J. L. Van Etten, Angew. Chem. Int. Ed. 2016, 55, 654-658;.
Angew. Chem. 2016, 128, 664-668;.
S. Lin, T. L. Lowary, Chem. Eur. J. 2018, 24, 16992-16996;.
B. Mishra, S. Manmode, G. Walke, S. Chakraborty, M. Neralkar, S. Hotha, Org. Biomol. Chem. 2021, 19, 1315-1328.
 .
L. P. Jordheim, D. Durantel, F. Zoulim, C. Dumontet, Nat. Rev. Drug Discovery 2013, 12, 447-464;.
C. Rinaldi, M. J. A. Wood, Nat. Rev. Neurol. 2018, 14, 9-21.
 .
H. B. Borén, G. Ekborg, K. Eklind, P. J. Garegg, A. Pilotti, C. G. Swahn, Acta Chem. Scand. 1973, 27, 2639-2644;.
G. Ekborg, B. Lindberg, J. Lønngren, Acta Chem. Scand. 1972, 26, 3287-3292;.
M. T. de Oliveira, D. L. Hughes, S. A. Nepogodiev, R. A. Field, Carbohydr. Res. 2008, 343, 211-220;.
S. A. Thadke, B. Mishra, S. Hotha, Org. Lett. 2013, 15, 2466-2469.
H. Ikeda, R. Fernandez, A. Wilk, J. J. Barchi, Jr., X. Huang, V. E. Marquez, Nucleic Acids Res. 1998, 26, 2237-2244.
B. Hu, L. Zhong, Y. Weng, L. Peng, Y. Huang, Y. Zhao, X.-J. Liang, Signal Transduction Targeted Ther. 2020, 5, 101.
فهرسة مساهمة: Keywords: Glycosylation; Homogeneous Catalysis; N-Glycosides; Nucleosides; Transition-Metal Catalysis
المشرفين على المادة: 0 (Glycosides)
0 (Nucleosides)
3M4G523W1G (Silver)
7440-57-5 (Gold)
7006-34-0 (Asparagine)
تواريخ الأحداث: Date Created: 20221202 Date Completed: 20230130 Latest Revision: 20230302
رمز التحديث: 20230303
DOI: 10.1002/anie.202214167
PMID: 36458817
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3773
DOI:10.1002/anie.202214167