دورية أكاديمية

Phonon behavior in a random solid solution: a lattice dynamics study on the high-entropy alloy FeCoCrMnNi.

التفاصيل البيبلوغرافية
العنوان: Phonon behavior in a random solid solution: a lattice dynamics study on the high-entropy alloy FeCoCrMnNi.
المؤلفون: Turner SR; Institut Laue-Langevin, F-38042, Grenoble, France.; Université Grenoble Alpes, CNRS, Grenoble-INP, SIMaP, F-38000, Grenoble, France.; Institute of Light and Matter, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622, Villeurbanne, France., Pailhès S; Institute of Light and Matter, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622, Villeurbanne, France., Bourdarot F; Université Grenoble Alpes, CEA, IRIG, MEM, MDN, F-38000, Grenoble, France., Ollivier J; Institut Laue-Langevin, F-38042, Grenoble, France., Sidis Y; Université Paris-Saclay, CNRS, CEA, Laboratoire Léon Brillouin, F-91191, Gif-sur-Yvette, France., Castellan JP; Université Paris-Saclay, CNRS, CEA, Laboratoire Léon Brillouin, F-91191, Gif-sur-Yvette, France.; Institut für Festkörperphysik, Karlsruher Institut für Technologie, D-76021, Karlsruhe, Germany., Zanotti JM; Université Paris-Saclay, CNRS, CEA, Laboratoire Léon Brillouin, F-91191, Gif-sur-Yvette, France., Berrod Q; Université Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, F-38000, Grenoble, France., Porcher F; Université Paris-Saclay, CNRS, CEA, Laboratoire Léon Brillouin, F-91191, Gif-sur-Yvette, France., Bosak A; European Synchrotron Radiation Facility, F-38043, Grenoble, France., Feuerbacher M; Peter Grünberg Institut PGI-5 and ER-C, FZ Jülich GmbH, D-52425, Jülich, Germany., Schober H; Institut Laue-Langevin, F-38042, Grenoble, France.; European Spallation Source, ERIC, P.O. Box 176, SE-221 00, Lund, Sweden., de Boissieu M; Université Grenoble Alpes, CNRS, Grenoble-INP, SIMaP, F-38000, Grenoble, France., Giordano VM; Institute of Light and Matter, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622, Villeurbanne, France. valentina.giordano@univ-lyon1.fr.
المصدر: Nature communications [Nat Commun] 2022 Dec 06; Vol. 13 (1), pp. 7509. Date of Electronic Publication: 2022 Dec 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مستخلص: High-Entropy Alloys (HEAs) are a new family of crystalline random alloys with four or more elements in a simple unit cell, at the forefront of materials research for their exceptional mechanical properties. Their strong chemical disorder leads to mass and force-constant fluctuations which are expected to strongly reduce phonon lifetime, responsible for thermal transport, similarly to glasses. Still, the long range order would associate HEAs to crystals with a complex disordered unit cell. These two families of materials, however, exhibit very different phonon dynamics, still leading to similar thermal properties. The question arises on the positioning of HEAs in this context. Here we present an exhaustive experimental investigation of the lattice dynamics in a HEA, Fe 20 Co 20 Cr 20 Mn 20 Ni 20 , using inelastic neutron and X-ray scattering. We demonstrate that HEAs present unique phonon dynamics at the frontier between fully disordered and ordered materials, characterized by long-propagating acoustic phonons in the whole Brillouin zone.
(© 2022. The Author(s).)
References: Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004). (PMID: 10.1002/adem.200300567)
Cantor, B., Chang, I., Knight, P. & Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375-377, 213 (2004). (PMID: 10.1016/j.msea.2003.10.257)
Miracle, D. & Senkov, O. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017). (PMID: 10.1016/j.actamat.2016.08.081)
Jadhav, M., Singh, S., Srivastava, M. & Kumar, G. V. An investigation on high entropy alloy for bond coat application in thermal barrier coating system. J. Alloy. Compd. 783, 662 (2019). (PMID: 10.1016/j.jallcom.2018.12.361)
Gao, M., Yeh, J.-W., Liaw, P. & Zhang, Y. High–Entropy Alloys (Springer-Verlag GmbH, 2016).
George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515 (2019). (PMID: 10.1038/s41578-019-0121-4)
Tsai, M.-H. Physical properties of high entropy alloys. Entropy 15, 5338 (2013). (PMID: 10.3390/e15125338)
Fan, Z., Wang, H., Wu, Y., Liu, X. & Lu, Z. Thermoelectric performance of PbSnTeSe high-entropy alloys. Mater. Res. Lett. 5, 187 (2016). (PMID: 10.1080/21663831.2016.1244116)
Jin, K. et al. Tailoring the physical properties of ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016). (PMID: 10.1038/srep20159)
Kush, L., Srivastava, S., Jaiswal, Y. & Srivastava, Y. Thermoelectric behaviour with high lattice thermal conductivity of nickel base ni2cucrfealx (x = 0.5, 1.0, 1.5 and 2.5) high entropy alloys. Mater. Res. Express 7, 035704 (2020). (PMID: 10.1088/2053-1591/ab7d5a)
Allen, P. B. & Feldman, J. L. Thermal conductivity of disordered harmonic solids. Phys. Rev. B 48, 12581 (1993). (PMID: 10.1103/PhysRevB.48.12581)
Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992). (PMID: 10.1103/PhysRevB.46.6131)
Monaco, G. & Giordano, V. M. Breakdown of the debye approximation for the acoustic modes with nanometric wavelengths in glasses. Proc. Natl Acad. Sci. USA 106, 3659 (2009). (PMID: 10.1073/pnas.0808965106)
Mizuno, H., Mossa, S. & Barrat, J.-L. Relation of vibrational excitations and thermal conductivity to elastic heterogeneities in disordered solids. Phys. Rev. B 94, 144303 (2016). (PMID: 10.1103/PhysRevB.94.144303)
Zhang, L. et al. Disorder-induced vibrational anomalies from crystalline to amorphous solids. Phys. Rev. Res. 3, L032067 (2021). (PMID: 10.1103/PhysRevResearch.3.L032067)
Klemens, P. G. The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. Sect. A 68, 1113 (1955). (PMID: 10.1088/0370-1298/68/12/303)
Taylor, D. W. Vibrational Properties of Imperfect Crystals with Large Defect Concentrations. Phys. Rev. 156, 1017 (1967). (PMID: 10.1103/PhysRev.156.1017)
Kamitakahara, W. A. & Taylor, D. W. Comparison of single-site approximations for the lattice dynamics of mass-disordered alloys. Phys. Rev. B 10, 1190 (1974). (PMID: 10.1103/PhysRevB.10.1190)
Tsunoda, Y., Kunitomi, N., Wakabayashi, N., Nicklow, R. M. & Smith, H. G. Phonon dispersion relations in the disordered ni 1−x pt x system. Phys. Rev. B 19, 2876 (1979). (PMID: 10.1103/PhysRevB.19.2876)
Katayama, H. & Kanamori, J. An extension of taylor’s theory of lattice vibration in disordered alloys. J. Phys. Soc. Jpn 45, 1157 (1978). (PMID: 10.1143/JPSJ.45.1157)
Ghosh, S., Leath, P. L. & Cohen, M. H. Phonons in random alloys: The itinerant coherent-potential approximation. Phys. Rev. B 66, 214206 (2002). (PMID: 10.1103/PhysRevB.66.214206)
Mu, S. et al. Unfolding the complexity of phonon quasi-particle physics in disordered materials. npj Comput. Mater. 6, 4 (2020). (PMID: 10.1038/s41524-020-0271-3)
Mu, S., Pei, Z., Liu, X. & Stocks, G. M. Electronic transport and phonon properties of maximally disordered alloys: From binaries to high-entropy alloys. J. Mater. Res. 33, 2857 (2018). (PMID: 10.1557/jmr.2018.300)
Toberer, E. S., Baranowski, L. L. & Dames, C. Advances in Thermal Conductivity. Annu. Rev. Mater. Res. 42, 179 (2012). (PMID: 10.1146/annurev-matsci-070511-155040)
Ovchinnikov, A., Smetana, V. & Mudring, A.-V. Metallic alloys at the edge of complexity: structural aspects, chemical bonding and physical properties. J. Phys. Condens. Matter 32, 243002 (2020). (PMID: 10.1088/1361-648X/ab6b87)
Chernikov, M. A., Bianchi, A. & Ott, H. R. Low-temperature thermal conductivity of icosahedral Al 70 Mn 9 Pd 21 . Phys. Rev. B 51, 153 (1995). (PMID: 10.1103/PhysRevB.51.153)
Takeuchi, T., Nagasako, N., Asahi, R. & Mizutani, U. Extremely small thermal conductivity of the Al-based Mackay-type 1/1-cubic approximants. Phys. Rev. B 74, 054206 (2006). (PMID: 10.1103/PhysRevB.74.054206)
Dubois, J.-M., & Belin-Ferré, E. Complex Metallic Alloys (Wiley-VCH Verlag GmbH & Co. KGaA, 2010).
Euchner, H. et al. Lattice dynamics of the icosahedral quasicrystals i-ZnMgSc and i-ZnAgSc and the cubic 1/1-approximant zn6sc. J. Phys. Condens. Matter 26, 055402 (2014). (PMID: 10.1088/0953-8984/26/5/055402)
Lory, P.-F. et al. Impact of structural complexity and disorder on lattice dynamics and thermal conductivity in the o-Al 13 Co 4 phase. Phys. Rev. B 102, 024303 (2020). (PMID: 10.1103/PhysRevB.102.024303)
Pailhès, S. et al. Localization of propagative phonons in a perfectly crystalline solid. Phys. Rev. Lett. 113, 025506 (2014). (PMID: 10.1103/PhysRevLett.113.025506)
Euchner, H., Pailhès, S., Giordano, V. M. & de Boissieu, M. Understanding lattice thermal conductivity in thermoelectric clathrates: A density functional theory study on binary Si-based type-I clathrates. Phys. Rev. B 97, 014304 (2018). (PMID: 10.1103/PhysRevB.97.014304)
Lory, P.-F. et al. Direct measurement of individual phonon lifetimes in the clathrate compound Ba 7.81 Ge 40.67 Au 5.33 . Nat. Commun. 8, 491 (2017). (PMID: 10.1038/s41467-017-00584-7)
Turner, S. R. et al. Impact of temperature and mode polarization on the acoustic phonon range in complex crystalline phases: a case study on intermetallic clathrates. Phys. Rev. Res. 3, 013021 (2021). (PMID: 10.1103/PhysRevResearch.3.013021)
Feuerbacher, M., Würtz, E., Kovács, A. & Thomas, C. Single-crystal growth of a FeCoCrMnAl high-entropy alloy. Mater. Res. Lett. 5, 128 (2016). (PMID: 10.1080/21663831.2016.1234516)
Wu, C.-S., Tsai, P.-H., Kuo, C.-M. & Tsai, C.-W. Effect of atomic size difference on the microstructure and mechanical properties of high–entropy alloys. Entropy 20, 967 (2018). (PMID: 10.3390/e20120967)
Zhang, F. et al. Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy. Mater. Res. Lett. 6, 450 (2018). (PMID: 10.1080/21663831.2018.1478332)
Koželj, P. et al. Spin-glass magnetism of the non-equiatomic CoCrFeMnNi high-entropy alloy. J. Magn. Magn. Mater. 523, 167579 (2021). (PMID: 10.1016/j.jmmm.2020.167579)
Schneeweiss, O. et al. Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys. Rev. B 96, 014437 (2017). (PMID: 10.1103/PhysRevB.96.014437)
Körmann, F. et al. “treasure maps” for magnetic high-entropy-alloys from theory and experiment. Appl. Phys. Lett. 107, 142404 (2015). (PMID: 10.1063/1.4932571)
Niu, C. et al. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Appl. Phys. Lett. 106, 161906 (2015). (PMID: 10.1063/1.4918996)
Tian, F., Varga, L. K., Chen, N., Delczeg, L. & Vitos, L. Ab initio investigation of high-entropy alloys of 3d elements. Phys. Rev. B 87, 075144 (2013). (PMID: 10.1103/PhysRevB.87.075144)
Lucas, M. S. et al. Magnetic and vibrational properties of high–entropy alloys. J. Appl. Phys. 109, 07E307 (2011). (PMID: 10.1063/1.3538936)
Ikeda, Y. et al. Temperature-dependent phonon spectra of magnetic random solid solutions. npj Comput. Mater. 4, 7 (2018). (PMID: 10.1038/s41524-018-0063-1)
Brink, T., Koch, L. & Albe, K. Structural origins of the boson peak in metals: From high-entropy alloys to metallic glasses. Phys. Rev. B 94, 224203 (2016). (PMID: 10.1103/PhysRevB.94.224203)
Lucas, M. S. et al. Phonon densities of states of face-centered-cubic Ni-Fe alloys. J. Appl. Phys. 113, 17A308 (2013). (PMID: 10.1063/1.4794354)
Lucas, M. S., Papandrew, A., Fultz, B. & Hu, M. Y. Partial phonon densities of states of 57 Fe in fe-cr: Analysis by a local-order cluster expansion. Phys. Rev. B 75, 054307 (2007). (PMID: 10.1103/PhysRevB.75.054307)
Lucas, M. S., Kresch, M., Stevens, R. & Fultz, B. Phonon partial densities of states and entropies of Fe and Cr in bcc Fe-Cr from inelastic neutron scattering. Phys. Rev. B 77, 184303 (2008). (PMID: 10.1103/PhysRevB.77.184303)
Lucas, M. S. et al. Effects of chemical composition and B2 order on phonons in bcc Fe–Co alloys. J. Appl. Phys. 108, 023519 (2010). (PMID: 10.1063/1.3456500)
Lucas, M. S. et al. Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl. Phys. Lett. 100, 251907 (2012). (PMID: 10.1063/1.4730327)
Wu, Y. et al. In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl. Phys. Lett. 104, 051910 (2014). (PMID: 10.1063/1.4863748)
Birgeneau, R. J., Cordes, J., Dolling, G. & Woods, A. D. B. Normal modes of vibration in nickel. Phys. Rev. 136, A1359 (1964). (PMID: 10.1103/PhysRev.136.A1359)
Hallman, E. D. & Brockhouse, B. N. Crystal dynamics of nickel–iron and copper–zinc alloys. Can. J. Phys. 47, 1117 (1969). (PMID: 10.1139/p69-140)
Körmann, F., Ikeda, Y., Grabowski, B. & Sluiter, M. H. F. Phonon broadening in high entropy alloys. npj Comput. Mater. 3, 36 (2017). (PMID: 10.1038/s41524-017-0037-8)
Lamago, D. et al. Measurement of strong phonon softening in Cr with and without Fermi-surface nesting by inelastic x-ray scattering. Phys. Rev. B 82, 195121 (2010). (PMID: 10.1103/PhysRevB.82.195121)
Kamitakahara, W. A. & Brockhouse, B. N. Vibrations of a mixed crystal: Neutron scattering from ni 55 pd 45 . Phys. Rev. B 10, 1200 (1974). (PMID: 10.1103/PhysRevB.10.1200)
Gurunathan, R., Hanus, R., Dylla, M., Katre, A. & Snyder, G. J. Analytical models of phonon–point-defect scattering. Phys. Rev. Appl. 13, 034011 (2020). (PMID: 10.1103/PhysRevApplied.13.034011)
Yang, J. et al. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi. J. Mater. Sci. Technol. 99, 55 (2022). (PMID: 10.1016/j.jmst.2021.04.077)
Overy, A. R., Simonov, A., Chater, P. A., Tucker, M. G. & Goodwin, A. L. Phonon broadening from supercell lattice dynamics: Random and correlated disorder. Phys. Status Solidi (b) 254, 1600586 (2016). (PMID: 10.1002/pssb.201600586)
Li, X. Y. et al. Observation of high-frequency transverse phonons in metallic glasses. Phys. Rev. Lett. 124, 225902 (2020). (PMID: 10.1103/PhysRevLett.124.225902)
Beltukov, Y. M. & Parshin, D. A. Theory of sparse random matrices and vibrational spectra of amorphous solids. Phys. Solid State 53, 151 (2011). (PMID: 10.1134/S1063783411010069)
Beltukov, Y. M. & Parshin, D. A. Density of states in random lattices with translational invariance. JETP Lett. 93, 598 (2011). (PMID: 10.1134/S002136401110002X)
Scopigno, T., Suck, J.-B., Angelini, R., Albergamo, F. & Ruocco, G. High-frequency dynamics in metallic glasses. Phys. Rev. Lett. 96, 135501 (2006). (PMID: 10.1103/PhysRevLett.96.135501)
Bruna, P. et al. Communication: Are metallic glasses different from other glasses? a closer look at their high frequency dynamics. J. Chem. Phys. 135, 101101 (2011). (PMID: 10.1063/1.3640002)
Tlili, A. et al. Thermal transport properties in amorphous/nanocrystalline metallic composites: a microscopic insight. Acta Mater. 136, 425 (2017). (PMID: 10.1016/j.actamat.2017.07.015)
Ichitsubo, T. et al. Elastic inhomogeneity and acoustic phonons in Pd-, Pt-, and Zr-based metallic glasses. Phys. Rev. B 81, 172201 (2010). (PMID: 10.1103/PhysRevB.81.172201)
Crespo, D., Bruna, P., Valles, A. & Pineda, E. Phonon dispersion relation of metallic glasses. Phys. Rev. B 94, 144205 (2016). (PMID: 10.1103/PhysRevB.94.144205)
Beltukov, Y. M., Parshin, D. A., Giordano, V. M. & Tanguy, A. Propagative and diffusive regimes of acoustic damping in bulk amorphous material. Phys. Rev. E 98, 023005 (2018). (PMID: 10.1103/PhysRevE.98.023005)
Cheng, Y. & Ma, E. Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 56, 379 (2011). (PMID: 10.1016/j.pmatsci.2010.12.002)
Kim, T., Moon, J. & Minnich, A. J. Origin of micrometer-scale propagation lengths of heat-carrying acoustic excitations in amorphous silicon. Phys. Rev. Mater. 5, 065602 (2021). (PMID: 10.1103/PhysRevMaterials.5.065602)
Moon, J. et al. Thermal acoustic excitations with atomic-scale wavelengths in amorphous silicon. Phys. Rev. Mater. 3, 065601 (2019). (PMID: 10.1103/PhysRevMaterials.3.065601)
Shibata, K. et al. Dynamics of the ZnMgY icosahedral phase. J. Phys. Condens. Matter 14, 1847 (2002). (PMID: 10.1088/0953-8984/14/8/313)
de Boissieu, M., Currat, R., Francoual, S. & Kats, E. Sound-mode broadening in quasicrystals: a simple phenomenological model. Phys. Rev. B 69, 054205 (2004). (PMID: 10.1103/PhysRevB.69.054205)
de Boissieu, M. et al. Lattice dynamics of the Zn-Mg-Sc icosahedral quasicrystal and its Zn-Sc periodic 1/1 approximant. Nat. Mater. 6, 977 (2007). (PMID: 10.1038/nmat2044)
Dugain, F. et al. Inelastic neutron scattering study of the dynamics of the alnico decagonal phase. Eur. Phys. J. B - Condens. Matter Complex Syst. 7, 513 (1999). (PMID: 10.1007/s100510050640)
Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011). (PMID: 10.1107/S0021889811038970)
معلومات مُعتمدة: FE 571/4 Deutsche Forschungsgemeinschaft (German Research Foundation); ANR-20-CE05-0046 Agence Nationale de la Recherche (French National Research Agency)
تواريخ الأحداث: Date Created: 20221206 Date Completed: 20221209 Latest Revision: 20221210
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9726824
DOI: 10.1038/s41467-022-35125-4
PMID: 36473859
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-022-35125-4