دورية أكاديمية

Epithelial TGFβ engages growth-factor signalling to circumvent apoptosis and drive intestinal tumourigenesis with aggressive features.

التفاصيل البيبلوغرافية
العنوان: Epithelial TGFβ engages growth-factor signalling to circumvent apoptosis and drive intestinal tumourigenesis with aggressive features.
المؤلفون: Flanagan DJ; Cancer Research UK Beatson Institute, Glasgow, UK. dustin.flanagan@monash.edu.; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia. dustin.flanagan@monash.edu.; Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia. dustin.flanagan@monash.edu., Amirkhah R; The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK., Vincent DF; Cancer Research UK Beatson Institute, Glasgow, UK., Gunduz N; Cancer Research UK Beatson Institute, Glasgow, UK., Gentaz P; Cancer Research UK Beatson Institute, Glasgow, UK., Cammareri P; Cancer Research UK Beatson Institute, Glasgow, UK., McCooey AJ; The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK., McCorry AMB; The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK., Fisher NC; The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK., Davis HL; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK., Ridgway RA; Cancer Research UK Beatson Institute, Glasgow, UK., Lohuis J; Department of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands., Leach JDG; Cancer Research UK Beatson Institute, Glasgow, UK.; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK., Jackstadt R; Cancer Research UK Beatson Institute, Glasgow, UK.; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) and Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany., Gilroy K; Cancer Research UK Beatson Institute, Glasgow, UK., Mariella E; Department of Oncology, University of Torino, Candiolo, Torino, Italy., Nixon C; Cancer Research UK Beatson Institute, Glasgow, UK., Clark W; Cancer Research UK Beatson Institute, Glasgow, UK., Hedley A; Cancer Research UK Beatson Institute, Glasgow, UK.; University of Newcastle upon Tyne, Newcastle, UK., Markert EK; Cancer Research UK Beatson Institute, Glasgow, UK.; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK., Strathdee D; Cancer Research UK Beatson Institute, Glasgow, UK., Bartholin L; INSERM Centre de Recherche en Cancérologie de Lyon, Lyon, France., Redmond KL; The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK., Kerr EM; The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK., Longley DB; The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK., Ginty F; GE Global Research Center, Niskayuna, NY, USA., Cho S; GE Global Research Center, Niskayuna, NY, USA., Coleman HG; The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.; Centre for Public Health, Queen's University Belfast, Belfast, UK., Loughrey MB; The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.; Centre for Public Health, Queen's University Belfast, Belfast, UK.; Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK., Bardelli A; Department of Oncology, University of Torino, Candiolo, Torino, Italy., Maughan TS; CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK., Campbell AD; Cancer Research UK Beatson Institute, Glasgow, UK., Lawler M; The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK., Leedham SJ; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK., Barry ST; Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK., Inman GJ; Cancer Research UK Beatson Institute, Glasgow, UK.; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK., van Rheenen J; Department of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands., Dunne PD; Cancer Research UK Beatson Institute, Glasgow, UK.; The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK., Sansom OJ; Cancer Research UK Beatson Institute, Glasgow, UK. o.sansom@beatson.gla.ac.uk.; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK. o.sansom@beatson.gla.ac.uk.
المصدر: Nature communications [Nat Commun] 2022 Dec 07; Vol. 13 (1), pp. 7551. Date of Electronic Publication: 2022 Dec 07.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Transforming Growth Factor beta* , Apoptosis*/genetics, Humans
مستخلص: The pro-tumourigenic role of epithelial TGFβ signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFβ signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFβ signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFβ signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFβ signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC's with born to be bad traits.
(© 2022. The Author(s).)
التعليقات: Erratum in: Nat Commun. 2023 Jan 31;14(1):522. (PMID: 36720858)
References: Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021). (PMID: 10.3322/caac.21660)
Arnold, M. et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66, 683–691 (2017). (PMID: 10.1136/gutjnl-2015-310912)
Logan, R. F. et al. Outcomes of the bowel cancer screening programme (BCSP) in England after the first 1 million tests. Gut 61, 1439–1446 (2012). (PMID: 10.1136/gutjnl-2011-300843)
Morris, E. J. et al. Surgical management and outcomes of colorectal cancer liver metastases. Br. J. Surg. 97, 1110–1118 (2010). (PMID: 10.1002/bjs.7032)
Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996). [pii]. (PMID: 10.1016/S0092-8674(00)81333-1)
Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701–708 (2020). (PMID: 10.1038/s41588-020-0628-z)
Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019). (PMID: 10.1038/s41588-019-0423-x)
Jung, B., Staudacher, J. J. & Beauchamp, D. Transforming growth factor beta superfamily signaling in development of colorectal cancer. Gastroenterology 152, 36–52 (2017). (PMID: 10.1053/j.gastro.2016.10.015)
Suh, H. N. et al. Quiescence exit of Tert(+) stem cells by Wnt/beta-catenin is indispensable for intestinal regeneration. Cell Rep. 21, 2571–2584 (2017). (PMID: 10.1016/j.celrep.2017.10.118)
Fleming, N. I. et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 73, 725–735 (2013). (PMID: 10.1158/0008-5472.CAN-12-2706)
Markowitz, S. et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338 (1995). (PMID: 10.1126/science.7761852)
Trobridge, P. et al. TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway. Gastroenterology 136, 1680–1688 e1687 (2009). (PMID: 10.1053/j.gastro.2009.01.066)
Cammareri, P. et al. TGFbeta pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis. Cell Death Differ. 24, 1681–1693 (2017). (PMID: 10.1038/cdd.2017.92)
Kitamura, T. et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat. Genet. 39, 467–475 (2007). (PMID: 10.1038/ng1997)
Brunen, D. et al. TGF-beta: an emerging player in drug resistance. Cell Cycle 12, 2960–2968 (2013). (PMID: 10.4161/cc.26034)
Calon, A. et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012). (PMID: 10.1016/j.ccr.2012.08.013)
Jackstadt, R. et al. Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell 36, 319–336 e317 (2019). (PMID: 10.1016/j.ccell.2019.08.003)
Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015). (PMID: 10.1038/nm.3967)
Tauriello, D. V. F. & Batlle, E. Targeting the microenvironment in advanced colorectal cancer. Trends Cancer 2, 495–504 (2016). (PMID: 10.1016/j.trecan.2016.08.001)
Miyoshi, H., Ajima, R., Luo, C. T., Yamaguchi, T. P. & Stappenbeck, T. S. Wnt5a potentiates TGF-beta signaling to promote colonic crypt regeneration after tissue injury. Science 338, 108–113 (2012). (PMID: 10.1126/science.1223821)
Isella, C. et al. Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer. Nat. Commun. 8, 15107 (2017). (PMID: 10.1038/ncomms15107)
Fessler, E. et al. TGFbeta signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol. Med. 8, 745–760 (2016). (PMID: 10.15252/emmm.201606184)
Chuvin, N. et al. Acinar-to-ductal metaplasia induced by transforming growth factor beta facilitates KRAS(G12D)-driven pancreatic tumorigenesis. Cell Mol. Gastroenterol. Hepatol. 4, 263–282 (2017). (PMID: 10.1016/j.jcmgh.2017.05.005)
Bird, T. G. et al. TGFbeta inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan1230 (2018).
Gao, Y. et al. Constitutively active transforming growth factor beta receptor 1 in the mouse ovary promotes tumorigenesis. Oncotarget 7, 40904–40918 (2016). (PMID: 10.18632/oncotarget.10149)
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017). (PMID: 10.1038/s41598-017-17204-5)
Atlas, N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012). (PMID: 10.1038/nature11252)
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011). (PMID: 10.1093/bioinformatics/btr260)
Komor, M. A. et al. Consensus molecular subtype classification of colorectal adenomas. J. Pathol. 246, 266–276 (2018). (PMID: 10.1002/path.5129)
Chang, K. et al. Colorectal premalignancy is associated with consensus molecular subtypes 1 and 2. Ann. Oncol. 29, 2061–2067 (2018). (PMID: 10.1093/annonc/mdy337)
Dunne, P. D. et al. Cancer-cell intrinsic gene expression signatures overcome intratumoural heterogeneity bias in colorectal cancer patient classification. Nat. Commun. 8, 15657 (2017). (PMID: 10.1038/ncomms15657)
el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004). (PMID: 10.1002/gene.20042)
Bartholin, L. et al. Generation of mice with conditionally activated transforming growth factor beta signaling through the TbetaRI/ALK5 receptor. Genesis 46, 724–731 (2008). (PMID: 10.1002/dvg.20425)
Spender, L. C. et al. Preclinical evaluation of AZ12601011 and AZ12799734, inhibitors of transforming growth factor beta superfamily type 1 receptors. Mol. Pharmacol. 95, 222–234 (2019). (PMID: 10.1124/mol.118.112946)
van der Flier, L. G., Haegebarth, A., Stange, D. E., van de Wetering, M. & Clevers, H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137, 15–17 (2009). (PMID: 10.1053/j.gastro.2009.05.035)
Schuijers, J., Mokry, M., Hatzis, P., Cuppen, E. & Clevers, H. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. EMBO J. 33, 146–156 (2014). (PMID: 10.1002/embj.201385358)
Fischer, J. M. et al. Single cell lineage tracing reveals a role for TgfbetaR2 in intestinal stem cell dynamics and differentiation. Proc. Natl Acad. Sci. USA 113, 12192–12197 (2016). (PMID: 10.1073/pnas.1611980113)
Yang, X., Li, C., Herrera, P. L. & Deng, C. X. Generation of Smad4/Dpc4 conditional knockout mice. Genesis 32, 80–81 (2002). (PMID: 10.1002/gene.10029)
Oshima, H. et al. Suppressing TGFbeta signaling in regenerating epithelia in an inflammatory microenvironment is sufficient to cause invasive intestinal cancer. Cancer Res. 75, 766–776 (2015). (PMID: 10.1158/0008-5472.CAN-14-2036)
Wiener, Z. et al. Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-beta. Proc. Natl Acad. Sci. USA 111, E2229–E2236 (2014). (PMID: 10.1073/pnas.1406444111)
Lahde, M. et al. Expression of R-spondin 1 in Apc(Min/+) mice suppresses growth of intestinal adenomas by altering Wnt and transforming growth factor beta signaling. Gastroenterology 160, 245–259 (2021). (PMID: 10.1053/j.gastro.2020.09.011)
Shibata, H. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278, 120–123 (1997). (PMID: 10.1126/science.278.5335.120)
Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 18, 5931–5942 (1999). (PMID: 10.1093/emboj/18.21.5931)
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001). (PMID: 10.1101/gad.943001)
Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015). (PMID: 10.1038/nm.3802)
Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012). (PMID: 10.1038/nature11156)
Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl Acad. Sci. USA 110, 11982–11987 (2013). (PMID: 10.1073/pnas.1300136110)
Fujino, S. et al. Plateletderived growth factor receptorbeta gene expression relates to recurrence in colorectal cancer. Oncol. Rep. 39, 2178–2184 (2018).
Goldstein, N. S. & Armin, M. Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer Stage IV colon adenocarcinoma: implications for a standardized scoring system. Cancer 92, 1331–1346 (2001). (PMID: 10.1002/1097-0142(20010901)92:5<1331::AID-CNCR1455>3.0.CO;2-M)
Batlle, E. & Massague, J. Transforming growth factor-beta signaling in immunity and cancer. Immunity 50, 924–940 (2019). (PMID: 10.1016/j.immuni.2019.03.024)
Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015). (PMID: 10.1038/ng.3214)
Tauriello, D. V. F. et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018). (PMID: 10.1038/nature25492)
Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015). (PMID: 10.1038/ng.3225)
Beumer, J. et al. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat. Cell Biol. 20, 909–916 (2018). (PMID: 10.1038/s41556-018-0143-y)
Davis, H. et al. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat. Med. 21, 62–70 (2015). (PMID: 10.1038/nm.3750)
Ryoo, H. D., Gorenc, T. & Steller, H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the wingless signaling pathways. Dev. Cell 7, 491–501 (2004). (PMID: 10.1016/j.devcel.2004.08.019)
McCarthy, N. et al. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 26, 391–402 e395 (2020). (PMID: 10.1016/j.stem.2020.01.008)
Mazerbourg, S. & Hsueh, A. J. Genomic analyses facilitate identification of receptors and signalling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands. Hum. Reprod. Update 12, 373–383 (2006). (PMID: 10.1093/humupd/dml014)
Mazerbourg, S. et al. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol. Endocrinol. 18, 653–665 (2004). (PMID: 10.1210/me.2003-0393)
Lee, M. K. et al. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 26, 3957–3967 (2007). (PMID: 10.1038/sj.emboj.7601818)
Huang, S. et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-beta receptor signaling. Cell 151, 937–950 (2012). (PMID: 10.1016/j.cell.2012.10.035)
Perea, D. et al. Ret receptor tyrosine kinase sustains proliferation and tissue maturation in intestinal epithelia. EMBO J. 36, 3029–3045 (2017). (PMID: 10.15252/embj.201696247)
Miguel, J. C. et al. Epidermal growth factor suppresses intestinal epithelial cell shedding through a MAPK-dependent pathway. J. Cell Sci. 130, 90–96 (2017).
Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013). (PMID: 10.1016/j.cell.2012.12.012)
Majewski, I. J. & Bernards, R. Taming the dragon: genomic biomarkers to individualize the treatment of cancer. Nat. Med. 17, 304–312 (2011). (PMID: 10.1038/nm.2311)
Kopetz, S. et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N. Engl. J. Med. 381, 1632–1643 (2019). (PMID: 10.1056/NEJMoa1908075)
Xue, J. Y. et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature 577, 421–425 (2020). (PMID: 10.1038/s41586-019-1884-x)
McBride, R. et al. Prognosis following surgical resection versus local excision of stage pT1 colorectal cancer: a population-based cohort study. Surgeon 18, 65–74 (2020). (PMID: 10.1016/j.surge.2019.06.004)
Lawler, M., Kaplan, R., Wilson, R. H., Maughan, T. & Consortium, S. C. Changing the paradigm-multistage multiarm randomized trials and stratified cancer medicine. Oncologist 20, 849–851 (2015).
Malla, S. B. et al. In-depth clinical and biological exploration of DNA damage immune response as a biomarker for oxaliplatin use in colorectal cancer. Clin. Cancer Res. 27, 288–300 (2021). (PMID: 10.1158/1078-0432.CCR-20-3237)
Tanaka, A. et al. Maspin as a prognostic marker for early stage colorectal cancer with microsatellite instability. Front. Oncol. 10, 945 (2020). (PMID: 10.3389/fonc.2020.00945)
Berens, M. E. et al. Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas. PLoS ONE 14, e0219724 (2019). (PMID: 10.1371/journal.pone.0219724)
Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010). (PMID: 10.1093/bioinformatics/btq170)
Senbabaoglu, Y., Michailidis, G. & Li, J. Z. Critical limitations of consensus clustering in class discovery. Sci. Rep. 4, 6207 (2014). (PMID: 10.1038/srep06207)
Larsson, J., Blank, U., Klintman, J., Magnusson, M. & Karlsson, S. Quiescence of hematopoietic stem cells and maintenance of the stem cell pool is not dependent on TGF-beta signaling in vivo. Exp. Hematol. 33, 592–596 (2005). (PMID: 10.1016/j.exphem.2005.02.003)
Schmidt, S. et al. A MYC-GCN2-eIF2alpha negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nat. Cell Biol. 21, 1413–1424 (2019). (PMID: 10.1038/s41556-019-0408-0)
Gay, D. M. et al. Loss of BCL9/9l suppresses Wnt driven tumourigenesis in models that recapitulate human cancer. Nat. Commun. 10, 723 (2019). (PMID: 10.1038/s41467-019-08586-3)
معلومات مُعتمدة: 110371/Z/15/Z United Kingdom WT_ Wellcome Trust; MR/S021205/1 United Kingdom MRC_ Medical Research Council; 24387 United Kingdom CRUK_ Cancer Research UK; BB/T002824/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; A12481 United Kingdom CRUK_ Cancer Research UK; MC_PC_21042 United Kingdom MRC_ Medical Research Council; MR/R017247/1 United Kingdom MRC_ Medical Research Council; 26045 United Kingdom CRUK_ Cancer Research UK; MC_PC_17117 United Kingdom MRC_ Medical Research Council; MR/M016587/1 United Kingdom MRC_ Medical Research Council; 15333 United Kingdom CRUK_ Cancer Research UK; 29834 United Kingdom CRUK_ Cancer Research UK; R01 CA208179 United States CA NCI NIH HHS; A17196 United Kingdom CRUK_ Cancer Research UK; 206314/Z/17/Z United Kingdom WT_ Wellcome Trust; G0400302 United Kingdom MRC_ Medical Research Council; 29802 United Kingdom CRUK_ Cancer Research UK
المشرفين على المادة: 0 (Transforming Growth Factor beta)
تواريخ الأحداث: Date Created: 20221208 Date Completed: 20221215 Latest Revision: 20240320
رمز التحديث: 20240320
مُعرف محوري في PubMed: PMC9729215
DOI: 10.1038/s41467-022-35134-3
PMID: 36477656
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-022-35134-3