دورية أكاديمية

Ionic homeostasis and redox metabolism upregulated by 24-epibrassinolide are crucial for mitigating nickel excess in soybean plants, enhancing photosystem II efficiency and biomass.

التفاصيل البيبلوغرافية
العنوان: Ionic homeostasis and redox metabolism upregulated by 24-epibrassinolide are crucial for mitigating nickel excess in soybean plants, enhancing photosystem II efficiency and biomass.
المؤلفون: Saraiva MP; Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil., Maia CF; Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil., Batista BL; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil., Lobato AKDS; Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil.
المصدر: Plant biology (Stuttgart, Germany) [Plant Biol (Stuttg)] 2023 Mar; Vol. 25 (2), pp. 343-355. Date of Electronic Publication: 2022 Dec 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 101148926 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1438-8677 (Electronic) Linking ISSN: 14358603 NLM ISO Abbreviation: Plant Biol (Stuttg) Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, England : Wiley
Original Publication: Stuttgart : New York, NY : G. Thieme Verlag ; Thieme New York, c1999-
مواضيع طبية MeSH: Glycine max*/metabolism , Photosystem II Protein Complex*/metabolism , Plant Growth Regulators*, Antioxidants/metabolism ; Biomass ; Brassinosteroids/pharmacology ; Chlorophyll/metabolism ; Homeostasis ; Nickel/pharmacology ; Oxidation-Reduction ; Photosynthesis
مستخلص: Nickel (Ni) excess often generates oxidative stress in chloroplasts, causing redox imbalance, membrane damage and negative impacts on biomass. 24-Epibrassinolide (EBR) is a plant growth regulator of great interest to the scientific community because it is a natural molecule extracted from plants, is biodegradable and environmentally friendly. This study aimed to determine whether EBR can improve ionic homeostasis, antioxidant enzymes, PSII efficiency and biomass by evaluating nutritional, physiological, biochemical and morphological responses of soybean plants subjected to Ni excess. The experiment used four randomized treatments, with two Ni concentrations (0 and 200 μm Ni, described as -Ni 2+ and +Ni 2+ , respectively) and two concentrations of EBR (0 and 100 nm EBR, described as -EBR and +EBR, respectively). In general, Ni had deleterious effects on chlorophyll fluorescence and gas exchange. In contrast, EBR enhanced the effective quantum yield of PSII photochemistry (15%) and electron transport rate (19%) due to upregulation of SOD, CAT, APX and POX. Exogenous EBR application promoted significant increases in biomass, and these results were explained by improved nutrient content and ionic homeostasis, as demonstrated by increased Ca 2+ /Ni 2+ , Mg 2+ /Ni +2 and Mn 2+ /Ni 2+ ratios.
(© 2022 German Society for Plant Sciences, Royal Botanical Society of the Netherlands.)
References: Ahammed G.J., Choudhary S.P., Chen S., Xia X., Shi K., Zhou Y., Yu J. (2013) Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. Journal of Experimental Botany, 64, 199-213.
Ahanger M.A., Mir R.A., Alyemeni M.N., Ahmad P. (2020) Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiology and Biochemistry, 147, 31-42. https://doi.org/10.1016/j.plaphy.2019.12.007.
Ahmad P., Abd-Allah E.F., Alyemeni M.N., Wijaya L., Alam P., Bhardwaj R., Siddique K.H.M. (2018a) Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. Scientific Reports, 8, 13515. https://doi.org/10.1038/s41598-018-31917-1.
Ahmad P., Ahanger M.A., Egamberdieva D., Alam P., Alyemeni M.N., Ashraf M. (2018b) Modification of osmolytes and antioxidant enzymes by 24-epibrassinolide in chickpea seedlings under mercury (Hg) toxicity. Journal of Plant Growth Regulation, 37, 309-322. https://doi.org/10.1007/s00344-017-9730-6.
Ahmad P., Jaleel C.A., Salem M.A., Nabi G., Sharma S. (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30, 161-175. https://doi.org/10.3109/07388550903524243.
Amari T., Ghnaya T., Abdelly C. (2017) Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South African Journal of Botany, 111, 99-110. https://doi.org/10.1016/j.sajb.2017.03.011.
Ameen N., Amjad M., Murtaza B., Abbas G., Shahid M., Imran M., Naeem M.A., Niazi N.K. (2019) Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants. Environmental Science and Pollution Research, 26, 10496-10514. https://doi.org/10.1007/s11356-019-04540-4.
Anjum S.A., Ashraf U., Tanveer M., Khan I., Hussain S., Shahzad B., Zohaib A., Abbas F., Saleem M.F., Ali I., Wang L.C. (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8, 1-12. https://doi.org/10.3389/fpls.2017.00069/full.
Anjum S.A., Tanveer M., Ashraf U., Hussain S., Shahzad B., Khan I., Wang L. (2016) Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environmental Science and Pollution Research, 23, 17132-17141. https://doi.org/10.1007/s11356-016-6894-8.
Aprile A., De Bellis L. (2020) Editorial for Special Issue “Heavy metals accumulation, toxicity, and detoxification in plants”. International Journal of Molecular Sciences, 21, 4103. https://www.mdpi.com/1422-0067/21/11/4103.
Ashraf U., Kanu A.S., Mo Z., Hussain S., Anjum S.A., Khan I., Abbas R.N., Tang X. (2015) Lead toxicity in riceeffects, mechanisms, and mitigation strategies-A mini review. Environmental Science and Pollution Research, 22, 18318-18332. https://doi.org/10.1007/s11356-015-5463-x.
Ayangbenro A., Babalola O. (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14, 94. http://www.mdpi.com/1660-4601/14/1/94.
Azeem U. (2018) Ameliorating nickel stress by jasmonic acid treatment in Zea mays L. Russian Agricultural Sciences, 44, 209-215. https://doi.org/10.3103/S1068367418030035.
Badawi G.H., Yamauchi Y., Shimada E., Sasaki R., Kawano N., Tanaka K., Tanaka K. (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Science, 166, 919-928. http://linkinghub.elsevier.com/retrieve/pii/S0168945203005090.
Bajguz A. (2000) Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiology and Biochemistry, 38, 209-215. https://linkinghub.elsevier.com/retrieve/pii/S0981942800007336.
Bamji S.F., Corbitt C. (2017) Glyceollins: soybean phytoalexins that exhibit a wide range of health-promoting effects. Journal of Functional Foods, 34, 98-105. https://doi.org/10.1016/j.jff.2017.04.020.
Barberon M., Vermeer J.E.M., De Bellis D., Wang P., Naseer S., Andersen T.G., Humbel B.M., Nawrath C., Takano J., Salt D.E., Geldner N. (2016) Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell, 164, 447-459. https://linkinghub.elsevier.com/retrieve/pii/S0092867415016852.
Batista B.L., Nigar M., Mestrot A., Rocha B.A., Barbosa J.F., Price A.H., Raab A., Feldmann J. (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. Journal of Experimental Botany, 65, 1467-1479. https://doi.org/10.1093/jxb/eru018.
Bose J., Babourina O., Shabala S., Rengel Z. (2013) Low-pH and aluminum resistance in Arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots. Plant and Cell Physiology, 54, 1093-1104.
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. http://linkinghub.elsevier.com/retrieve/pii/0003269776905273.
Bukhari S.A.H., Wang R., Wang W., Ahmed I.M., Zheng W., Cao F. (2016) Genotype-dependent effect of exogenous 24-epibrassinolide on chromium-induced changes in ultrastructure and physicochemical traits in tobacco seedlings. Environmental Science and Pollution Research, 23, 18229-18238. https://doi.org/10.1007/s11356-016-7017-2.
Cakmak I., Horst W.J. (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum, 83, 463-468. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x.
Cakmak I., Marschner H. (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222-1227. https://doi.org/10.1104/pp.98.4.1222.
Cao S., Xu Q., Cao Y., Qian K., An K., Zhu Y., Binzeng H., Zhao H., Kuai B. (2005) Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiologia Plantarum, 123, 57-66. https://doi.org/10.1111/j.1399-3054.2004.00432.x.
Chandrakar V., Yadu B., Meena R.K., Dubey A., Keshavkant S. (2017) Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiology and Biochemistry, 112, 74-86. https://doi.org/10.1016/j.plaphy.2016.12.023.
Cui L., Zou Z., Zhang J., Zhao Y., Yan F. (2016) 24-Epibrassinoslide enhances plant tolerance to stress from low temperatures and poor light intensities in tomato (Lycopersicon esculentum mill.). Functional & Integrative Genomics, 16, 29-35. https://doi.org/10.1007/s10142-015-0464-x.
Dalyan E., Yüzbaşıoğlu E., Akpınar I. (2018) Effect of 24-epibrassinolide on antioxidative defence system against lead-induced oxidative stress in the roots of Brassica juncea L. seedlings. Russian Journal of Plant Physiology, 65, 570-578. https://doi.org/10.1134/S1021443718040118.
Dong Y., Chen W., Bai X., Liu F., Wan Y. (2019) Effects of exogenous nitric oxide and 24-epibrassinolide on the physiological characteristics of peanut seedlings under cadmium stress. Pedosphere, 29, 45-59. https://linkinghub.elsevier.com/retrieve/pii/S100201601760376X.
Dourado M.N., Franco M.R., Peters L.P., Martins P.F., Souza L.A., Piotto F.A., Azevedo R.A. (2015) Antioxidant enzymes activities of Burkholderia spp. strains -oxidative responses to Ni toxicity. Environmental Science and Pollution Research, 22, 19922-19932. https://doi.org/10.1007/s11356-015-5204-1.
Drążkiewicz M., Baszyński T. (2010) Interference of nickel with the photosynthetic apparatus of Zea mays. Ecotoxicology and Environmental Safety, 73, 982-986. https://linkinghub.elsevier.com/retrieve/pii/S014765131000031X.
Elstner E.F., Heupel A. (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Analytical Biochemistry, 70, 616-620. http://linkinghub.elsevier.com/retrieve/pii/0003269776904887.
Fariduddin Q., Ahmed M., Mir B.A., Yusuf M., Khan T.A. (2015) 24-Epibrassinolide mitigates the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. Environmental Science and Pollution Research, 22, 11349-11359. https://doi.org/10.1007/s11356-015-4339-4.
Farooq M., Wahid A., Basra S.M.A. (2009) Improving water relations and gas exchange with brassinosteroids in rice under drought stress. Journal of Agronomy and Crop Science, 195, 262-269. https://doi.org/10.1111/j.1439-037X.2009.00368.x.
da Fonseca S.S., da Silva B.R.S., Lobato A.K. (2020) 24-Epibrassinolide positively modulate leaf structures, antioxidant system and photosynthetic machinery in Rice under simulated acid rain. Journal of Plant Growth Regulation, 39, 1559-1576. https://doi.org/10.1007/s00344-020-10167-4.
Gajewska E., Skłodowska M. (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regulation, 54, 179-188. https://doi.org/10.1007/s10725-007-9240-9.
Gajewska E., Sklodowska M., Slaba M., Mazur J. (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biologia Plantarum, 50, 653-659. https://doi.org/10.1007/s10535-006-0102-5.html.
Giannopolitis C.N., Ries S.K. (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309-314.
Gill S.S., Tuteja N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016.
Gong M., Li Y.-J., Chen S.-Z. (1998) Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. Journal of Plant Physiology, 153, 488-496. https://doi.org/10.1016/S0176-1617(98)80179-X.
Gransee A., Führs H. (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil, 368, 5-21. https://doi.org/10.1007/s11104-012-1567-y.
Gupta P., Srivastava S., Seth C.S. (2016) 24-Epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant and Soil, 411, 483-498. https://doi.org/10.1007/s11104-016-3043-6.
Havir E.A., McHale N.A. (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84, 450-455. https://doi.org/10.1104/pp.84.2.450.
Hussain A., Nazir F., Fariduddin Q. (2019) 24-Epibrassinolide and spermidine alleviate Mn stress via the modulation of root morphology, stomatal behavior, photosynthetic attributes and antioxidant defense in Brassica juncea. Physiology and Molecular Biology of Plants, 25, 905-919. https://doi.org/10.1007/s12298-019-00672-6.
Israr M., Jewell A., Kumar D., Sahi S.V. (2011) Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. Journal of Hazardous Materials, 186, 1520-1526. https://doi.org/10.1016/j.jhazmat.2010.12.021.
Jan S., Alyemeni M.N., Wijaya L., Alam P., Siddique K.H., Ahmad P. (2018) Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biology, 18, 146. https://doi.org/10.1186/s12870-018-1359-5.
Khaliq A., Ali S., Hameed A., Farooq M.A., Farid M., Shakoor M.B., Mahmood K., Ishaque W., Rizwan M. (2016) Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis, and suppressing Ni uptake and oxidative stress. Archives of Agronomy and Soil Science, 62, 633-647. https://doi.org/10.1080/03650340.2015.1073263.
Khan W.U., Ahmad S.R., Yasin N.A., Ali A., Ahmad A., Akram W. (2017) Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. International Journal of Phytoremediation, 19, 813-824. https://doi.org/10.1080/15226514.2017.1290580.
Kohli S.K., Handa N., Sharma A., Kumar V., Kaur P., Bhardwaj R. (2017) Synergistic effect of 24-epibrassinolide and salicylic acid on photosynthetic efficiency and gene expression in Brassica juncea L. under Pb stress. Turkish Journal of Biology, 41, 943-953.
Küpper H., Andresen E. (2016) Mechanisms of metal toxicity in plants. Metallomics, 8, 269-285. http://xlink.rsc.org/?DOI=C5MT00244C.
Lichtenthaler H.K., Buschmann C. (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1, F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01.
Lima J.V., Lobato A.K.S. (2017) Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiology and Molecular Biology of Plants, 23, 59-72.
Lima M.D.R., Barros Junior U.O., Batista B.L., Lobato A.K.S. (2018) Brassinosteroids mitigate iron deficiency improving nutritional status and photochemical efficiency in Eucalyptus urophylla plants. Trees, 32, 1681-1694. https://doi.org/10.1007/s00468-018-1743-7.
Liu S., He Y., Tian H., Yu C., Tan W., Li Z., Duan L. (2019) Application of brassinosteroid mimetics improves growth and tolerance of maize to nicosulfuron toxicity. Journal of Plant Growth Regulation, 38, 701-712. https://doi.org/10.1007/s00344-018-9883-y.
Lobato A.K., Barbosa M.A.M., Alsahli A.A., Lima E.J.A., Silva B.R.S. (2021) Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. Physiologia Plantarum, 172, 869-884.
Majumdar S., Pagano L., Wohlschlegel J.A., Villani M., Zappettini A., White J.C., Keller A.A. (2019) Proteomic, gene and metabolite characterization reveal the uptake and toxicity mechanisms of cadmium sulfide quantum dots in soybean plants. Environmental Science: Nano, 6, 3010-3026. http://xlink.rsc.org/?DOI=C9EN00599D.
Matraszek R., Hawrylak-Nowak B., Chwil S., Chwil M. (2016) Macronutrient composition of nickel-treated wheat under different sulfur concentrations in the nutrient solution. Environmental Science and Pollution Research, 23, 5902-5914. https://doi.org/10.1007/s11356-015-5823-6.
Matraszek R., Hawrylak-Nowak B., Chwil S., Chwil M. (2017) Macronutrient balance of nickel-stressed lettuce plants grown under different sulfur levels. Communications in Soil Science and Plant Analysis, 48, 665-682. https://doi.org/10.1080/00103624.2017.1298779.
Mir M.A., Sirhindi G., Alyemeni M.N., Alam P., Ahmad P. (2018) Jasmonic acid improves growth performance of soybean under nickel toxicity by regulating nickel uptake, redox balance, and oxidative stress metabolism. Journal of Plant Growth Regulation, 37, 1195-1209. https://doi.org/10.1007/s00344-018-9814-y.
Muhammad B.H., Shafaqat A., Aqeel A., Saadia H., Muhammad A.F., Basharat A., Saima A.B., Muhammad B.G. (2013) Morphological, physiological and biochemical responses of plants to nickel stress: a review. African Journal of Agricultural Research, 8, 1596-1602. http://academicjournals.org/journal/AJAR/article-abstract/44DA5E035474.
Nakano Y., Asada K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.
Nazir F., Hussain A., Fariduddin Q. (2019) Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress. Environmental and Experimental Botany, 162, 479-495. https://doi.org/10.1016/j.envexpbot.2019.03.021.
Oliveira V.P., Lima M.D.R., Silva B.R.S., Batista B.L., Lobato A.K.S. (2019) Brassinosteroids confer tolerance to salt stress in Eucalyptus urophylla plants enhancing homeostasis, antioxidant metabolism and leaf anatomy. Journal of Plant Growth Regulation, 38, 557-573. https://doi.org/10.1007/s00344-018-9870-3.
Palacios G., Gómez I., Carbonell-Barrachina A., Pedreño J.N., Mataix J. (1998) Effect of nickel concentration on tomato plant nutrition and dry matter yield. Journal of Plant Nutrition, 21, 2179-2191. https://doi.org/10.1080/01904169809365553.
Palliotti A., Tombesi S., Frioni T., Silvestroni O., Lanari V., D'Onofrio C., Matarese F., Bellincontro A., Poni S. (2015) Physiological parameters and protective energy dissipation mechanisms expressed in the leaves of two Vitis vinifera L. genotypes under multiple summer stresses. Journal of Plant Physiology, 185, 84-92. https://doi.org/10.1016/j.jplph.2015.07.007.
Paniz F.P., Pedron T., Freire B.M., Torres D.P., Silva F.F., Batista B.L. (2018) Effective procedures for the determination of As, Cd, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Th, Zn, U and rare earth elements in plants and foodstuffs. Analytical Methods, 10, 4094-4103.
Parida B., Chhibba I., Nayyar V. (2003) Influence of nickel-contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Scientia Horticulturae, 98, 113-119. https://linkinghub.elsevier.com/retrieve/pii/S030442380200208X.
Parmoon G., Ebadi A., Jahanbakhsh S., Hashemi M., Moosavi S.A. (2018) Effect of exogenous application of several plant growth regulators on photosynthetic pigments of fennel plants. Notulae Scientia Biologicae, 10, 508-515. https://www.notulaebiologicae.ro/index.php/nsb/article/view/10356.
Pereira Y.C., Rodrigues W.S., Lima E.J.A., Santos L.R., Silva M.H.L., Lobato A.K.S. (2019) Brassinosteroids increase electron transport and photosynthesis in soybean plants under water deficit. Photosynthetica, 57, 181-191. https://doi.org/10.32615/ps.2019.029.
Pietrini F., Iori V., Cheremisina A., Shevyakova N.I., Radyukina N., Kuznetsov V.V., Zacchini M. (2015) Evaluation of nickel tolerance in Amaranthus paniculatus L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal-binding molecule content. Environmental Science and Pollution Research, 22, 482-494. https://doi.org/10.1007/s11356-014-3349-y.
Rahman H., Sabreen S., Alam S., Kawai S. (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. Journal of Plant Nutrition, 28, 393-404. https://doi.org/10.1081/PLN-200049149.
Rahman M.F., Ghosal A., Alam M.F., Kabir A.H. (2017) Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon. Ecotoxicology and Environmental Safety, 135, 165-172. https://doi.org/10.1016/j.ecoenv.2016.09.019.
Rajewska I., Talarek M., Bajguz A. (2016) Brassinosteroids and response of plants to heavy metals action. Frontiers in Plant Science, 7, 1-5. https://doi.org/10.3389/fpls.2016.00629/abstract.
Ranathunge K., Steudle E., Lafitte R. (2003) Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta, 217, 193-205. https://doi.org/10.1007/s00425-003-0984-9.
Reis A.R., de Queiroz Barcelos J.P., de Souza Osório C.R.W., Santos E.F., Lisboa L.A.M., Santini J.M.K., dos Santos M.J.D., Furlani J.E., Campos M., de Figueiredo P.A.M., Lavres J., Gratão P.L. (2017) A glimpse into the physiological, biochemical and nutritional status of soybean plants under Ni-stress conditions. Environmental and Experimental Botany, 144, 76-87. https://linkinghub.elsevier.com/retrieve/pii/S0098847217302435.
Ribeiro A.T., Oliveira V.P., Oliveira Barros Junior U., Silva B.R.S., Batista B.L., Lobato A.K.S. (2020) 24-Epibrassinolide mitigates nickel toxicity in young Eucalyptus urophylla S.T. Blake plants: nutritional, physiological, biochemical, anatomical and morphological responses. Annals of Forest Science, 77, 1-19.
Ribeiro D.G.S., Silva S.B.R., Lobato A.K.S. (2019) Brassinosteroids induce tolerance to water deficit in soybean seedlings: contributions linked to root anatomy and antioxidant enzymes. Acta Physiologiae Plantarum, 41, 1-11.
Rizwan M., Mostofa M.G., Ahmad M.Z., Imtiaz M., Mehmood S., Adeel M., Dai Z., Li Z., Aziz O., Zhang Y., Tu S. (2018) Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression. Chemosphere, 191, 23-35. https://doi.org/10.1016/j.chemosphere.2017.09.068.
Rodrigues W., Pereira Y.C., de Souza A.L.M., Batista B.L., Lobato A.K. (2020) Alleviation of oxidative stress induced by 24-epibrassinolide in soybean plants exposed to different manganese supplies: upregulation of antioxidant enzymes and maintenance of photosynthetic pigments. Journal of Plant Growth Regulation, 39, 1425-1440. https://doi.org/10.1007/s00344-020-10091-7.
Sadeghi F., Shekafandeh A. (2014) Effect of 24-epibrassinolide on salinity-induced changes in loquat (Eriobotrya japonica Lindl). Journal of Applied Botany and Food Quality, 87, 182-189.
Santos L.R., Batista B.L., Lobato A.K.S. (2018) Brassinosteroids mitigate cadmium toxicity in cowpea plants. Photosynthetica, 56, 591-605. https://doi.org/10.1007/s11099-017-0700-9.html.
Santos L.R., da Silva B.R.S., Pedron T., Batista B.L., Lobato A.K. (2020) 24-Epibrassinolide improves root anatomy and antioxidant enzymes in soybean plants subjected to zinc stress. Journal of Soil Science and Plant Nutrition, 20, 105-124. https://doi.org/10.1007/s42729-019-00105-z.
Saraiva M.P., Maia C.F., Silva B.R.S., Batista B.L., Lobato A.K. (2021) 24-Epibrassinolide induces protection against nickel excess in soybean plants: anatomical evidences. Brazilian Journal of Botany, 44, 197-205. https://doi.org/10.1007/s40415-021-00701-3.
Shah A.A., Ahmed S., Yasin N.A. (2019) 24-Epibrassinolide triggers cadmium stress mitigation in Cucumis sativus through intonation of antioxidant system. South African Journal of Botany, 127, 349-360. https://doi.org/10.1016/j.sajb.2019.11.003.
Sharma A., Kumar V., Singh R., Thukral A.K., Bhardwaj R. (2016) Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicology and Environmental Safety, 133, 195-201. https://doi.org/10.1016/j.ecoenv.2016.07.008.
Sharma A., Thakur S., Kumar V., Kesavan A.K., Thukral A.K., Bhardwaj R. (2017) 24-Epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L. BMC Plant Biology, 17, 56. https://doi.org/10.1186/s12870-017-1003-9.
Sharma I., Pati P.K., Bhardwaj R. (2011) Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L. Acta Physiologiae Plantarum, 33, 1723-1735. https://doi.org/10.1007/s11738-010-0709-1.
Shu S., Tang Y., Yuan Y., Sun J., Zhong M., Guo S. (2016) The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiology and Biochemistry, 107, 344-353. https://doi.org/10.1016/j.plaphy.2016.06.021.
Signorella S., Palopoli C., Ledesma G. (2018) Rationally designed mimics of antioxidant manganoenzymes: role of structural features in the quest for catalysts with catalase and superoxide dismutase activity. Coordination Chemistry Reviews, 365, 75-102. https://doi.org/10.1016/j.ccr.2018.03.005.
Sirhindi G., Mir M.A., Abd-Allah E.F., Ahmad P., Gucel S. (2016) Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine max under nickel toxicity. Frontiers in Plant Science, 7, 1-12. https://doi.org/10.3389/fpls.2016.00591/abstract.
Soares C., de Sousa A., Pinto A., Azenha M., Teixeira J., Azevedo R.A., Fidalgo F. (2016) Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environmental and Experimental Botany, 122, 115-125. https://doi.org/10.1016/j.envexpbot.2015.09.010.
Song Y.L., Dong Y.J., Tian X.Y., Kong J., Bai X.Y., Xu L.L., He Z.L. (2016) Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. Biologia Plantarum, 60, 329-342.
Sorin C., Musse M., Mariette F., Bouchereau A., Leport L. (2015) Assessment of nutrient remobilization through structural changes of palisade and spongy parenchyma in oilseed rape leaves during senescence. Planta, 241, 333-346. https://doi.org/10.1007/s00425-014-2182-3.
Sreekanth T.V.M., Nagajyothi P.C., Lee K.D., Prasad T.N.V.K. (2013) Occurrence, physiological responses and toxicity of nickel in plants. International Journal of Environmental Science and Technology, 10, 1129-1140. https://doi.org/10.1007/s13762-013-0245-9.
Steel R.G., Torrie J.H., Dickey D.A. (2006) Principles and procedures of statistics: a biometrical approach, 3rd edition. Academic Publishers, Moorpark, CA, USA.
Surgun Y., Çöl B., Bürün B. (2016) 24-Epibrassinolide ameliorates the effects of boron toxicity on Arabidopsis thaliana (L.) Heynh by activating an antioxidant system and decreasing boron accumulation. Acta Physiologiae Plantarum, 38, 71. https://doi.org/10.1007/s11738-016-2088-8.
Talarek-karwel M., Bajguz A., Piotrowska-Niczyporuk A. (2020) 24-Epibrassinolide modulates primary metabolites, antioxidants, and phytochelatins in Acutodesmus obliquus exposed to lead stress. Journal of Applied Phycology, 32, 263-276.
Tanveer M., Shahzad B., Sharma A., Biju S., Bhardwaj R. (2018) 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiology and Biochemistry, 130, 69-79. https://doi.org/10.1016/j.plaphy.2018.06.035.
Torres G.N., Camargos S.L., Weber O.L.D.S., Maas K.D.B., Scaramuzza W.L.M.P. (2016) Growth and micronutrient concentration in maize plants under nickel and lime applications. Revista Caatinga, 29, 796-804. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1983-21252016000400796&lng=en&tlng=en.
Velikova V., Yordanov I., Edreva A. (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Science, 151, 59-66. http://linkinghub.elsevier.com/retrieve/pii/S0168945299001971.
Wang C., Xu W., Jin H., Zhang T., Lai J., Zhou X., Zhang S., Liu S., Duan X., Wang H., Peng C., Yang C. (2016) A putative chloroplast-localized Ca(2+)/H(+) antiporter CCHA1 is involved in calcium and pH homeostasis and required for PSII function in Arabidopsis. Molecular Plant, 9, 1183-1196. https://doi.org/10.1016/j.molp.2016.05.015.
Wani A.S., Tahir I., Ahmad S.S., Dar R.A., Nisar S. (2017) Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Scientia Horticulturae, 225, 48-55.
Wu Q.-S., Xia R.-X., Zou Y.-N. (2006) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. Journal of Plant Physiology, 163, 1101-1110. http://linkinghub.elsevier.com/retrieve/pii/S0176161705003044.
Xia X.-J., Huang L.-F., Zhou Y.-H., Mao W.-H., Shi K., Wu J.-X., Asami T., Chen Z., Yu J.-Q. (2009a) Brassinosteroids promote photosynthesis and growth by enhancing activation of rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230, 1185-1196. https://doi.org/10.1007/s00425-009-1016-1.
Xia X.J., Zhang Y., Wu J.X., Wang J.T., Zhou Y.H., Shi K., Yu Y.L., Yu J.Q. (2009b) Brassinosteroids promote metabolism of pesticides in cucumber. Journal of Agricultural and Food Chemistry, 57, 8406-8413. https://doi.org/10.1021/jf901915a.
Yan Z.Z., Ke L., Tam N.F.Y. (2010) Lead stress in seedlings of Avicennia marina, a common mangrove species in South China, with and without cotyledons. Aquatic Botany, 92, 112-118. https://linkinghub.elsevier.com/retrieve/pii/S0304377009001430.
Yang M., Zhang W., Dong H., Zhang Y., Lv K., Wang D., Lian X. (2013) OsNRAMP3 is a vascular bundles-specific manganese transporter that is responsible for manganese distribution in rice (V.N. Uversky, ed.). PLoS ONE, 8, e83990. https://doi.org/10.1371/journal.pone.0083990.
Yousaf M.J., Hussain A., Hamayun M., Iqbal A., Irshad M., Kim H.Y., Lee I.J. (2021) Transformation of endophytic Bipolaris spp. into biotrophic pathogen under auxin cross-talk with brassinosteroids and abscisic acid. Frontiers in Bioengineering and Biotechnology, 9, 1-14.
Yuan L., Zhu S., Shu S., Sun J., Guo S. (2015) Regulation of 2,4-epibrassinolide on mineral nutrient uptake and ion distribution in Ca(NO3)2 stressed cucumber plants. Journal of Plant Physiology, 188, 29-36. https://linkinghub.elsevier.com/retrieve/pii/S0176161715001595.
Yusuf M., Fariduddin Q., Ahmad A. (2011a) 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants. Chemosphere, 85, 1574-1584. https://doi.org/10.1016/j.chemosphere.2011.08.004.
Yusuf M., Fariduddin Q., Hayat S., Ahmad A. (2011b) Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology, 86, 1-17. https://doi.org/10.1007/s00128-010-0171-1.
Yusuf M., Fariduddin Q., Khan T.A., Hayat S. (2017) Epibrassinolide reverses the stress generated by combination of excess aluminum and salt in two wheat cultivars through altered proline metabolism and antioxidants. South African Journal of Botany, 112, 391-398. https://doi.org/10.1016/j.sajb.2017.06.034.
Zhong W., Xie C., Hu D., Pu S., Xiong X., Ma J., Sun L., Huang Z., Jiang M., Li X. (2020) Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress. Ecotoxicology and Environmental Safety, 187, 109831. https://linkinghub.elsevier.com/retrieve/pii/S0147651319311625.
معلومات مُعتمدة: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil); Fundação Amazônia de Amparo a Estudos e Pesquisas (FAPESPA/Brazil); Universidade Federal Rural da Amazônia (UFRA/Brazil); Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Brassinosteroids; Glycine max; chlorophyll fluorescence; growth; heavy metal
المشرفين على المادة: 0 (Antioxidants)
Y9IQ1L53OX (brassinolide)
0 (Brassinosteroids)
1406-65-1 (Chlorophyll)
7OV03QG267 (Nickel)
0 (Photosystem II Protein Complex)
0 (Plant Growth Regulators)
تواريخ الأحداث: Date Created: 20221209 Date Completed: 20230306 Latest Revision: 20240227
رمز التحديث: 20240228
DOI: 10.1111/plb.13496
PMID: 36484563
قاعدة البيانات: MEDLINE
الوصف
تدمد:1438-8677
DOI:10.1111/plb.13496