دورية أكاديمية

Bidirectional promoter activity from expression cassettes can drive off-target repression of neighboring gene translation.

التفاصيل البيبلوغرافية
العنوان: Bidirectional promoter activity from expression cassettes can drive off-target repression of neighboring gene translation.
المؤلفون: Powers EN; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States., Chan C; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States., Doron-Mandel E; Department of Biological Sciences, Columbia University, New York, United States., Llacsahuanga Allcca L; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States., Kim Kim J; Department of Biological Sciences, Columbia University, New York, United States., Jovanovic M; Department of Biological Sciences, Columbia University, New York, United States., Brar GA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.; California Institute for Quantitative Biosciences (QB3), University of California, Berkley, Berkley, United States.; Center for Computational Biology, University of California, Berkeley, Berkeley, United States.
المصدر: ELife [Elife] 2022 Dec 12; Vol. 11. Date of Electronic Publication: 2022 Dec 12.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: eLife Sciences Publications, Ltd Country of Publication: England NLM ID: 101579614 Publication Model: Electronic Cited Medium: Internet ISSN: 2050-084X (Electronic) Linking ISSN: 2050084X NLM ISO Abbreviation: Elife Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
مواضيع طبية MeSH: Saccharomyces cerevisiae*/genetics , Saccharomyces cerevisiae*/metabolism , Saccharomyces cerevisiae Proteins*/genetics , Saccharomyces cerevisiae Proteins*/metabolism, Humans ; Promoter Regions, Genetic ; Protein Biosynthesis ; DEAD-box RNA Helicases/metabolism
مستخلص: Targeted selection-based genome-editing approaches have enabled many fundamental discoveries and are used routinely with high precision. We found, however, that replacement of DBP1 with a common selection cassette in budding yeast led to reduced expression and function for the adjacent gene, MRP51 , despite all MRP51 coding and regulatory sequences remaining intact. Cassette-induced repression of MRP51 drove all mutant phenotypes detected in cells deleted for DBP1 . This behavior resembled the 'neighboring gene effect' (NGE), a phenomenon of unknown mechanism whereby cassette insertion at one locus reduces the expression of a neighboring gene. Here, we leveraged strong off-target mutant phenotypes resulting from cassette replacement of DBP1 to provide mechanistic insight into the NGE. We found that the inherent bidirectionality of promoters, including those in expression cassettes, drives a divergent transcript that represses MRP51 through combined transcriptional interference and translational repression mediated by production of a long undecoded transcript isoform (LUTI). Divergent transcript production driving this off-target effect is general to yeast expression cassettes and occurs ubiquitously with insertion. Despite this, off-target effects are often naturally prevented by local sequence features, such as those that terminate divergent transcripts between the site of cassette insertion and the neighboring gene. Thus, cassette-induced off-target effects can be eliminated by the insertion of transcription terminator sequences into the cassette, flanking the promoter. Because the driving features of this off-target effect are broadly conserved, our study suggests it should be considered in the design and interpretation of experiments using integrated expression cassettes in other eukaryotic systems, including human cells.
Competing Interests: EP, CC, ED, LL, JK, MJ, GB No competing interests declared
(© 2022, Powers et al.)
References: Methods Mol Biol. 2008;416:205-20. (PMID: 18392970)
Proc Natl Acad Sci U S A. 1997 May 13;94(10):5201-6. (PMID: 9144215)
Mol Cell Biol. 2004 Jul;24(14):6241-52. (PMID: 15226427)
Nature. 2001 Sep 20;413(6853):327-31. (PMID: 11565036)
Nature. 2004 Jun 3;429(6991):571-4. (PMID: 15175754)
Nat Protoc. 2019 Jan;14(1):68-85. (PMID: 30464214)
Data Brief. 2019 Feb 02;23:103701. (PMID: 30815525)
Science. 2012 Feb 3;335(6068):552-7. (PMID: 22194413)
Nature. 2003 Oct 16;425(6959):686-91. (PMID: 14562095)
Yeast. 1994 Dec;10(13):1793-808. (PMID: 7747518)
FEMS Microbiol Lett. 2005 Jul 1;248(1):31-6. (PMID: 15953696)
Cell. 1982 Jul;29(3):939-44. (PMID: 6217898)
Bioinformatics. 2004 Jun 12;20(9):1453-4. (PMID: 14871861)
Plant Cell. 2002 Mar;14(3):673-88. (PMID: 11910013)
Nat Methods. 2008 Aug;5(8):711-8. (PMID: 18622397)
Microorganisms. 2020 Feb 26;8(3):. (PMID: 32110897)
Nucleic Acids Res. 2016 Mar 18;44(5):e50. (PMID: 26602688)
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7037-44. (PMID: 11416184)
Nat Methods. 2012 Feb 05;9(4):373-8. (PMID: 22306811)
Yeast. 1998 Jul;14(10):953-61. (PMID: 9717241)
Nature. 2009 Feb 19;457(7232):1033-7. (PMID: 19169243)
Nucleic Acids Res. 2007;35(8):2544-53. (PMID: 17403692)
J Mol Biol. 1979 Jan 25;127(3):353-6. (PMID: 372543)
Nucleic Acids Res. 2008 Apr;36(6):2024-31. (PMID: 18276645)
Cell. 2017 Aug 24;170(5):889-898.e10. (PMID: 28803729)
Nucleic Acids Res. 2019 Sep 19;47(16):8785-8806. (PMID: 31299079)
Mol Cell. 2013 Nov 21;52(4):485-94. (PMID: 24211263)
Trends Genet. 2011 Jul;27(7):267-76. (PMID: 21601935)
Bioinformatics. 2004 Dec 12;20(18):3710-5. (PMID: 15297299)
Nature. 2003 Oct 16;425(6959):737-41. (PMID: 14562106)
Nat Struct Mol Biol. 2013 Aug;20(8):923-8. (PMID: 23851456)
Cell Rep. 2015 Nov 24;13(8):1610-22. (PMID: 26586442)
Genetics. 2014 Jun;197(2):451-65. (PMID: 24939991)
Wiley Interdiscip Rev RNA. 2014 Nov-Dec;5(6):765-78. (PMID: 24995549)
PLoS Genet. 2013;9(8):e1003529. (PMID: 23950723)
Nature. 2009 Feb 19;457(7232):1038-42. (PMID: 19169244)
Science. 2008 Dec 19;322(5909):1845-8. (PMID: 19056941)
Bioinformatics. 2004 Nov 22;20(17):3246-8. (PMID: 15180930)
G3 (Bethesda). 2019 Apr 9;9(4):1045-1053. (PMID: 30723103)
Nucleic Acids Res. 2016 Feb 29;44(4):1483-95. (PMID: 26773057)
Nat Biotechnol. 2008 Dec;26(12):1367-72. (PMID: 19029910)
Biochim Biophys Acta. 2013 Feb;1833(2):400-9. (PMID: 22374136)
Cell Rep. 2020 Jul 21;32(3):107942. (PMID: 32698007)
Nat Struct Mol Biol. 2016 May;23(5):441-9. (PMID: 27065197)
PLoS Genet. 2015 Feb 13;11(2):e1004999. (PMID: 25680078)
Nat Genet. 2000 Jul;25(3):333-7. (PMID: 10888885)
Dev Cell. 2018 Jul 16;46(2):219-235.e8. (PMID: 30016623)
Nucleic Acids Res. 2021 Nov 8;49(19):11134-11144. (PMID: 34606617)
Cell. 2012 Sep 14;150(6):1170-81. (PMID: 22959267)
Nucleic Acids Res. 1985 Dec 9;13(23):8587-601. (PMID: 3001645)
Methods Mol Biol. 2021;2252:89-125. (PMID: 33765272)
Nucleic Acids Res. 1996 Jul 1;24(13):2519-24. (PMID: 8692690)
Cell. 2018 Feb 22;172(5):910-923.e16. (PMID: 29474919)
Mol Cell Biol. 1988 Nov;8(11):4608-15. (PMID: 2850465)
Mol Microbiol. 1991 Apr;5(4):805-12. (PMID: 1857205)
Nat Rev Mol Cell Biol. 2015 Mar;16(3):190-202. (PMID: 25650800)
Mol Cell. 2012 Nov 9;48(3):409-21. (PMID: 23000176)
Nature. 2013 May 2;497(7447):127-31. (PMID: 23615609)
Elife. 2017 Sep 14;6:. (PMID: 28906249)
Nature. 2002 Jul 25;418(6896):387-91. (PMID: 12140549)
Science. 2016 Jun 17;352(6292):1413-6. (PMID: 27313038)
Nature. 1986 Aug 7-13;322(6079):562-5. (PMID: 3736674)
BMC Biol. 2010 Apr 21;8:49. (PMID: 20409324)
Mol Cell Biol. 1998 Apr;18(4):1826-34. (PMID: 9528754)
Genome Biol. 2005;6(13):R111. (PMID: 16420678)
Cell. 1984 Dec;39(3 Pt 2):449-67. (PMID: 6096005)
Nature. 1989 Jan 19;337(6204):279-82. (PMID: 2492088)
Nature. 2013 Jul 18;499(7458):360-3. (PMID: 23792564)
Science. 1999 Aug 6;285(5429):901-6. (PMID: 10436161)
Elife. 2017 Sep 14;6:. (PMID: 28906248)
Mol Ther Nucleic Acids. 2022 May 18;28:877-891. (PMID: 35694213)
Science. 2008 Dec 19;322(5909):1851-4. (PMID: 19056938)
J Biol Eng. 2016 Dec 16;10:19. (PMID: 28018483)
FEBS Lett. 1997 Dec 22;420(1):20-4. (PMID: 9450542)
Science. 2012 Aug 17;337(6096):816-21. (PMID: 22745249)
Cell. 1991 Sep 20;66(6):1239-56. (PMID: 1913808)
RNA. 2012 Oct;18(10):1934-45. (PMID: 22923767)
Science. 1985 Nov 1;230(4725):511-7. (PMID: 2996137)
Cell. 2014 Jun 19;157(7):1712-23. (PMID: 24949978)
Yeast. 1997 Sep 15;13(11):1065-75. (PMID: 9290211)
Science. 2008 Dec 19;322(5909):1849-51. (PMID: 19056940)
PLoS Genet. 2014 Oct 09;10(10):e1004632. (PMID: 25299594)
Nature. 2011 Jan 20;469(7330):368-73. (PMID: 21248844)
J Cell Sci. 2019 Apr 26;132(8):. (PMID: 31028152)
Cell. 2006 Nov 17;127(4):735-45. (PMID: 17110333)
Cell Rep. 2020 Jun 9;31(10):107754. (PMID: 32521279)
Cell. 2005 Jun 3;121(5):725-37. (PMID: 15935759)
Elife. 2015 Apr 23;4:. (PMID: 25905671)
Nucleic Acids Res. 1993 Jul 11;21(14):3329-30. (PMID: 8341614)
Gene. 1995 May 26;158(1):113-7. (PMID: 7789793)
Curr Biol. 2008 Jul 8;18(13):969-75. (PMID: 18595705)
Mol Cell. 2019 Jan 3;73(1):36-47.e10. (PMID: 30503772)
Cell. 2013 Nov 21;155(5):1075-87. (PMID: 24210918)
Gene Ther. 2008 Mar;15(5):384-90. (PMID: 18283290)
معلومات مُعتمدة: R35 GM128802 United States GM NIGMS NIH HHS; R35 GM134886 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: S. cerevisiae; alternative transcripts; bidirectional transcription; chromosomes; gene expression; genetics; genome editing; genomics; neighboring gene effect; transcriptional interference
سلسلة جزيئية: GEO GSE207267; GSE207189; GSE121189; GSE111255
المشرفين على المادة: EC 3.6.1.- (DBP1 protein, S cerevisiae)
0 (Saccharomyces cerevisiae Proteins)
EC 3.6.4.13 (DEAD-box RNA Helicases)
تواريخ الأحداث: Date Created: 20221212 Date Completed: 20221216 Latest Revision: 20240704
رمز التحديث: 20240704
مُعرف محوري في PubMed: PMC9754628
DOI: 10.7554/eLife.81086
PMID: 36503721
قاعدة البيانات: MEDLINE
الوصف
تدمد:2050-084X
DOI:10.7554/eLife.81086