دورية أكاديمية

Research progress of L-aspartate-α-decarboxylase and its isoenzyme in the β-alanine synthesis.

التفاصيل البيبلوغرافية
العنوان: Research progress of L-aspartate-α-decarboxylase and its isoenzyme in the β-alanine synthesis.
المؤلفون: Hu ZC; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China., Tian YH; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China., Yang JL; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China., Zhu YN; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China., Zhou HY; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China., Zheng YG; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China., Liu ZQ; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. microliu@zjut.edu.cn.
المصدر: World journal of microbiology & biotechnology [World J Microbiol Biotechnol] 2022 Dec 14; Vol. 39 (2), pp. 42. Date of Electronic Publication: 2022 Dec 14.
نوع المنشور: Review; Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Berlin : Springer
Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
مواضيع طبية MeSH: Isoenzymes* , Glutamate Decarboxylase*/metabolism, Aspartic Acid/metabolism ; beta-Alanine
مستخلص: Driven by the massive demand in recent years, the production of β-alanine has significantly progressed in chemical and biological ways. Although the chemical method is relatively mature compared to biological synthesis, its high cost of waste disposal and environmental pollution does not meet the environmental protection standard. Hence, the biological method has become more prevalent as a potential alternative to the chemical synthesis of β-alanine in recent years. As a result, the aspartate pathway from L-aspartate to β-alanine (the most significant rate-limiting step in the β-alanine synthesis) catalyzed by L-aspartate-α-decarboxylase (ADC) has become a research hotspot in recent years. Therefore, it is vital to comprehensively understand the different enzymes that possess a similar catalytic ability to ADC. This review will investigate the exploratory process of unique synthesis features and catalytic properties of ADC/ADC-like enzymes in particular creatures with similar catalytic capacity or high sequence homology. At the same time, we will discuss the different β-alanine production methods which can apply to future industrialization.
(© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Albert A et al (1998) Crystal structure of aspartate decarboxylase at 2.2 Å resolution provides evidence for an ester in protein self-processing. Nat Struct Biol 5:289–293. https://doi.org/10.1038/nsb0498-289. (PMID: 10.1038/nsb0498-289)
Andersen SO (1979) Biochemistry of insect cuticle. Annu Rev Entomol 24:29–59. https://doi.org/10.1146/annurev.en.24.010179.000333. (PMID: 10.1146/annurev.en.24.010179.000333)
Andersen SO (2007) Involvement of tyrosine residues, N-terminal amino acids, and β-alanine in insect cuticular sclerotization. Insect Biochem Mol Biol 37:969–974. https://doi.org/10.1016/j.ibmb.2007.05.002. (PMID: 10.1016/j.ibmb.2007.05.002)
Anton DL, Kutny R (1987) Mechanism of substrate inactivation of Escherichia coli S-adenosylmethionine decarboxylase. Biochemistry 26:6444–6447. https://doi.org/10.1021/bi00394a022. (PMID: 10.1021/bi00394a022)
Arakane Y et al (2009) Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum. J Biol Chem 284:16584–16594. https://doi.org/10.1074/jbc.M901629200. (PMID: 10.1074/jbc.M901629200)
Bellia F et al (2011) Neuroprotective features of carnosine in oxidative driven diseases. Mol Aspects Med 32:258–266. https://doi.org/10.1016/j.mam.2011.10.009. (PMID: 10.1016/j.mam.2011.10.009)
Bonner J, Bonner H (1948) The B vitamins as plant hormones. Vitam Horm 6:225–275. https://doi.org/10.1016/S0083-6729(08)60459-8. (PMID: 10.1016/S0083-6729(08)60459-8)
Borodina I et al (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab Eng 27:57–64. https://doi.org/10.1016/j.ymben.2014.10.003. (PMID: 10.1016/j.ymben.2014.10.003)
Chopra S, Pai H, Ranganathan A (2002) Expression, purification, and biochemical characterization of Mycobacterium tuberculosis aspartate decarboxylase, PanD. Protein Expr Purif 25:533–540. (PMID: 10.1016/S1046-5928(02)00039-6)
Cronan JE Jr (1980) β-alanine synthesis in Escherichia coli. J Bacteriol 141:1291–1297. https://doi.org/10.1128/jb.141.3.1291-1297.1980. (PMID: 10.1128/jb.141.3.1291-1297.1980)
Cui W et al (2014) Significance of Arg3, Arg54, and Tyr58 of L-aspartate-α-decarboxylase from Corynebacterium glutamicum in the process of self-cleavage. Biotechnol Lett 36:121–126. https://doi.org/10.1007/s10529-013-1337-9. (PMID: 10.1007/s10529-013-1337-9)
Dai F et al (2015) Aspartate decarboxylase is required for a normal pupa pigmentation pattern in the silkworm, Bombyx Mori. Sci Rep 5:10885. https://doi.org/10.1038/srep10885. (PMID: 10.1038/srep10885)
David WE, Lichstein HC (1950) Aspartic acid decarboxylase in bacteria. Proc Soc Exp Biol Med 73:216–218. https://doi.org/10.3181/00379727-73-17632. (PMID: 10.3181/00379727-73-17632)
Dusch N, Pühler A, Kalinowski J (1999) Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-α-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol 65:1530–1539. https://doi.org/10.1128/AEM.65.4.1530-1539.1999. (PMID: 10.1128/AEM.65.4.1530-1539.1999)
Feng Z et al (2019) Extracellular expression of L-aspartate-α-decarboxylase from Bacillus tequilensis and its application in the biosynthesis of β-Alanine. Appl Biochem Biotechnol 189:273–283. https://doi.org/10.1007/s12010-019-03013-1. (PMID: 10.1007/s12010-019-03013-1)
Fukushi Y, Seki T (1965) Differences in amino acid compositions of pupal sheaths between wild and black pupa strains in some species of insects. Jpn J Genet 40:203–208. https://doi.org/10.1266/jjg.40.203. (PMID: 10.1266/jjg.40.203)
Gopalan G, Chopra S, Ranganathan A, Swaminathan K (2006) Crystal structure of uncleaved L-aspartate-α-decarboxylase from Mycobacterium tuberculosis. Proteins 65:796–802. https://doi.org/10.1002/prot.21126. (PMID: 10.1002/prot.21126)
Hipkiss AR (2009) Chapter 3 Carnosine and its possible roles in nutrition and health. Adv Food Nutr Res 57:87–154. https://doi.org/10.1016/S1043-4526(09)57003-9. (PMID: 10.1016/S1043-4526(09)57003-9)
Hodgetts RB (1972) Biochemical characterization of mutants affecting the metabolism of β-alanine in Drosophila. J Insect Physiol 18:937–947. https://doi.org/10.1016/0022-1910(72)90031-5. (PMID: 10.1016/0022-1910(72)90031-5)
Hopkins TL, Kramer K (1992) Insect cuticle sclerotization. Annu Rev Entomol 37:273–302. https://doi.org/10.1146/annurev.en.37.010192.001421. (PMID: 10.1146/annurev.en.37.010192.001421)
Khushoo A, Pal Y, Singh BN, Mukherjee KJ (2004) Extracellular expression and single step purification of recombinant Escherichia coli L-asparaginase II. Protein Expr Purif 38:29–36. https://doi.org/10.1016/j.pep.2004.07.009. (PMID: 10.1016/j.pep.2004.07.009)
Kim HW, Kashima Y, Ishikawa K, Yamano N (2009) Purification and characterization of the first archaeal glutamate decarboxylase from Pyrococcus horikoshii. Biosci Biotechnol Biochem 73:224–227. https://doi.org/10.1271/bbb.80583. (PMID: 10.1271/bbb.80583)
Könst PM, Franssen MCR, Scott EL, Sanders JPM (2009) A study on the applicability of L-aspartate-α-decarboxylase in the biobased production of nitrogen containing chemicals. Green Chem 11:1646–1652. https://doi.org/10.1039/B902731A. (PMID: 10.1039/B902731A)
Kramer KJ et al (1984) Catecholamines and β-alanine in the red flour beetle, Tribolium castaneum: roles in cuticle sclerotization and melanization. Insect Biochem 14:293–298. https://doi.org/10.1016/0020-1790(84)90063-5. (PMID: 10.1016/0020-1790(84)90063-5)
Kwon AR et al (2002) Crystallization and preliminary X-ray crystallographic analysis of aspartate 1-decarboxylase from Helicobacter pylori. Acta Crystallogr D 58(5):861–863. https://doi.org/10.1107/S0907444902004833. (PMID: 10.1107/S0907444902004833)
Lee BI, Suh SW (2004) Crystal structure of the schiff base intermediate prior to decarboxylation in the catalytic cycle of aspartate α-decarboxylase. J Mol Biol 340:1–7. https://doi.org/10.1016/j.jmb.2004.04.049. (PMID: 10.1016/j.jmb.2004.04.049)
Li J, Ling Y, Fan J et al (2006) Expression of cysteine sulfinate decarboxylase (CSD) in male reproductive organs of mice[J]. Histochem Cell Biol 125:607–613. https://doi.org/10.1007/s00418-005-0095-8. (PMID: 10.1007/s00418-005-0095-8)
Li H et al (2018) β-alanine production using whole-cell biocatalysts in recombinant Escherichia coli. Mol Catal 449:93–98. https://doi.org/10.1016/j.mcat.2018.02.008. (PMID: 10.1016/j.mcat.2018.02.008)
Li B et al (2022) Rerouting fluxes of the central carbon metabolism and relieving mechanism-based inactivation of L-aspartate-α-decarboxylase for fermentative production of β-Alanine in Escherichia coli. ACS Synth Biol 11:1908–1918. https://doi.org/10.1021/acssynbio.2c00055. (PMID: 10.1021/acssynbio.2c00055)
Liu P, Ding H, Christensen BM, Li J (2012a) Cysteine sulfinic acid decarboxylase activity of Aedes aegypti aspartate α-decarboxylase: the structural basis of its substrate selectivity. Insect Biochem Mol Biol 42:396–403. https://doi.org/10.1016/j.ibmb.2012.02.001. (PMID: 10.1016/j.ibmb.2012.02.001)
Liu P et al (2012b) Role of glutamate decarboxylase-like protein 1 (GADL1) in taurine biosynthesis. J Biol Chem 287:40898–40906. https://doi.org/10.1074/jbc.M112.393728. (PMID: 10.1074/jbc.M112.393728)
Liu P et al (2013) Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases. Amino Acids 44:391–404. https://doi.org/10.1007/s00726-012-1342-7. (PMID: 10.1007/s00726-012-1342-7)
Liu Z et al (2019) Characterization of cysteine sulfinic acid decarboxylase from Tribolium castaneum and its application in the production of β-alanine. Appl Microbiol Biotechnol 103:9443–9453. https://doi.org/10.1007/s00253-019-10139-z. (PMID: 10.1007/s00253-019-10139-z)
Mahootchi E et al (2020) GADL1 is a multifunctional decarboxylase with tissue-specific roles in β-alanine and carnosine production. Sci Adv 6:3713. https://doi.org/10.1126/sciadv.abb3713. (PMID: 10.1126/sciadv.abb3713)
Martin AJP, Synge RLM (1945) Analytical chemisty of the proteins. Adv Protein Chem 2:1–83. https://doi.org/10.1016/S0065-3233(08)60620-8. (PMID: 10.1016/S0065-3233(08)60620-8)
Mo Q, Li Y, Wang J, Shi G (2018) Identification of mutations restricting autocatalytic activation of bacterial L-aspartate-α-decarboxylase. Amino Acids 50:1433–1440. https://doi.org/10.1007/s00726-018-2620-9. (PMID: 10.1007/s00726-018-2620-9)
Mo Q, Mao A, Li Y, Shi G (2019) Substrate inactivation of bacterial L-aspartate-α-decarboxylase from Corynebacterium jeikeium K411 and improvement of molecular stability by saturation mutagenesis. World J Microbiol Biotechnol 35:1–8. https://doi.org/10.1007/s11274-019-2629-6. (PMID: 10.1007/s11274-019-2629-6)
Monteiro DCF et al (2015) The structure of the PanD/PanZ protein complex reveals negative feedback regulation of pantothenate biosynthesis by coenzyme A. Chem Biol 22:492–503. https://doi.org/10.1016/j.chembiol.2015.03.017. (PMID: 10.1016/j.chembiol.2015.03.017)
Nakano Y, Kitaoka S (1971) L-aspartate-α-decarboxylase in a cell-free system from Escherichia coli. J Biochem 70:327–334. https://doi.org/10.1093/oxfordjournals.jbchem.a129644. (PMID: 10.1093/oxfordjournals.jbchem.a129644)
Nozaki S, Webb ME, Niki H (2012) An activator for pyruvoyl-dependent L-aspartate-α-decarboxylase is conserved in a small group of the gamma-proteobacteria including Escherichia coli. Microbiologyopen 1:298–310. https://doi.org/10.1002/mbo3.34. (PMID: 10.1002/mbo3.34)
Pei W et al (2017) Molecular engineering of L-aspartate-α-decarboxylase for improved activity and catalytic stability. Appl Microbiol Biotechnol 101:6015–6021. https://doi.org/10.1007/s00253-017-8337-y. (PMID: 10.1007/s00253-017-8337-y)
Phillips AM et al (2005) The Drosophila black enigma: the molecular and behavioural characterization of the black1 mutant allele. Gene 351:131–142. https://doi.org/10.1016/j.gene.2005.03.013. (PMID: 10.1016/j.gene.2005.03.013)
Piao X et al (2019) Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield. Metab Eng 54:244–254. https://doi.org/10.1016/j.ymben.2019.04.012. (PMID: 10.1016/j.ymben.2019.04.012)
Qian Y et al (2018) Production of β-Alanine from fumaric acid using a dual-enzyme cascade. ChemCatChem 10:4984–4991. https://doi.org/10.1002/cctc.201801050. (PMID: 10.1002/cctc.201801050)
Qian Y et al (2020) Engineering protonation conformation of L-aspartate-α-decarboxylase to relieve mechanism-based inactivation. Biotechnol Bioeng 117:1607–1614. https://doi.org/10.1002/bit.27316. (PMID: 10.1002/bit.27316)
Ramjee MK, Genschel U, Abell C, Smith AG (1997) Escherichia coli L-aspartate-α-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry. Biochem J 323:661–669. https://doi.org/10.1042/bj3230661. (PMID: 10.1042/bj3230661)
Richardson G et al (2010) An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes. Mol Biol Rep 37:3199–3205. https://doi.org/10.1007/s11033-009-9902-y. (PMID: 10.1007/s11033-009-9902-y)
Saldanha SA et al (2001) Identification of Tyr58 as the proton donor in the aspartate α-decarboxylase reaction. Chem Commun 18:1760–1761. https://doi.org/10.1039/b106090m. (PMID: 10.1039/b106090m)
Schmitzberger F et al (2003) Structural constraints on protein self-processing in L-aspartate-α-decarboxylase. EMBO J 22:6193–6204. https://doi.org/10.1093/emboj/cdg575. (PMID: 10.1093/emboj/cdg575)
Shen Y et al (2014) Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum. Biotechnol Lett 36:1681–1686. https://doi.org/10.1007/s10529-014-1527-0. (PMID: 10.1007/s10529-014-1527-0)
Song CW, Lee J, Ko YS, Lee SY (2015) Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng 30:121–129. https://doi.org/10.1016/j.ymben.2015.05.005. (PMID: 10.1016/j.ymben.2015.05.005)
Stuecker TN, Hodge KM, Escalante-Semerena JC (2012a) The missing link in coenzyme A biosynthesis: PanM (formerly YhhK), a yeast GCN5 acetyltransferase homologue triggers aspartate decarboxylase (PanD) maturation in Salmonella enterica. Mol Microbiol 84:608–619. https://doi.org/10.1111/j.1365-2958.2012.08046.x. (PMID: 10.1111/j.1365-2958.2012.08046.x)
Stuecker TN, Tucker AC, Escalante-Semerena JC (2012b) PanM, an acetyl-coenzyme A sensor required for maturation of L-aspartate decarboxylase (PanD). mBio 3:e00158-12. https://doi.org/10.1128/mBio.00158-12. (PMID: 10.1128/mBio.00158-12)
Stuecker TN et al (2015) Phylogenetic and amino acid conservation analyses of bacterial L-aspartate-α-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain. BMC Res Notes 8:1–11. https://doi.org/10.1186/s13104-015-1314-6. (PMID: 10.1186/s13104-015-1314-6)
Su L, Ma Y, Wu J (2015) Extracellular expression of natural cytosolic arginine deiminase from Pseudomonas putida and its application in the production of L-citrulline. Bioresour Technol 196:176–183. https://doi.org/10.1016/j.biortech.2015.07.081. (PMID: 10.1016/j.biortech.2015.07.081)
Tadi SRR, Nehru G, Sivaprakasam S (2022) One-Pot biosynthesis of 3-aminopropionic acid from fumaric acid using recombinant Bacillus megaterium containing a linear dual-enzyme cascade. Appl Biochem Biotechnol 194:1740–1754. https://doi.org/10.1007/s12010-021-03783-7. (PMID: 10.1007/s12010-021-03783-7)
Tigu F et al (2018) A highly active pantothenate synthetase from Corynebacterium glutamicum enables the production of D-pantothenic acid with high productivity. Appl Microbiol Biotechnol 102:6039–6046. https://doi.org/10.1007/s00253-018-9017-2. (PMID: 10.1007/s00253-018-9017-2)
Tomita H et al (2014) An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme A biosynthesis. J Bacteriol 196:1222–1230. https://doi.org/10.1128/JB.01327-13. (PMID: 10.1128/JB.01327-13)
Wang Y, Xu H, White RH (2014) β-alanine biosynthesis in Methanocaldococcus jannaschii. J Bacteriol 196:2869–2875. https://doi.org/10.1128/JB.01784-14. (PMID: 10.1128/JB.01784-14)
Wang L et al (2020) Enhanced production of β-alanine through co-expressing two different subtypes of L-aspartate-α-decarboxylase. J Ind Microbiol Biotechnol 47:465–474. https://doi.org/10.1007/s10295-020-02285-5. (PMID: 10.1007/s10295-020-02285-5)
Wang L et al (2021a) Advances in biotechnological production of β-alanine. World J Microbiol Biotechnol 37:1–11. https://doi.org/10.1007/s11274-021-03042-1. (PMID: 10.1007/s11274-021-03042-1)
Wang P et al (2021b) Multiplex modification of Escherichia coli for enhanced β-alanine biosynthesis through metabolic engineering. Bioresour Technol 342:126050. https://doi.org/10.1016/j.biortech.2021.126050. (PMID: 10.1016/j.biortech.2021.126050)
Webb ME, Smith AG, Abell C (2004) Biosynthesis of pantothenate. Nat Prod Rep 21:695–721. https://doi.org/10.1039/B316419P. (PMID: 10.1039/B316419P)
Webb ME et al (2012) Structure of Escherichia coli aspartate α-decarboxylase Asn72Ala: probing the role of Asn72 in pyruvoyl cofactor formation. Acta Crystallogr Sect F 68:414–417. https://doi.org/10.1107/S1744309112009487. (PMID: 10.1107/S1744309112009487)
Williamson JM, Brown GM (1979) Purification and properties of L-aspartate-α-decarboxylase, an enzyme that catalyzes the formation of β-alanine in Escherichia coli. J Biol Chem 254:8074–8082. https://doi.org/10.1016/s0021-9258(18)36052-6. (PMID: 10.1016/s0021-9258(18)36052-6)
Yu XJ et al (2020) Protein engineering of a pyridoxal-5’-phosphate-dependent L-aspartate-α-decarboxylase from Tribolium castaneum for β-Alanine production. Molecules 25:1280. https://doi.org/10.3390/molecules25061280. (PMID: 10.3390/molecules25061280)
Zhang T et al (2018) Glu56Ser mutation improves the enzymatic activity and catalytic stability of Bacillus subtilis L-aspartate-α-decarboxylase for an efficient β-alanine production. Process Biochem 70:117–123. https://doi.org/10.1016/j.procbio.2018.04.004. (PMID: 10.1016/j.procbio.2018.04.004)
Zou X, Guo L, Huang L et al (2020) Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli. Appl Microbiol Biotechnol 104:2545–2559. https://doi.org/10.1007/s00253-020-10359-8. (PMID: 10.1007/s00253-020-10359-8)
فهرسة مساهمة: Keywords: Cysteine sulfinic acid decarboxylase; Enzymatic catalysis; L-Aspartate-α-decarboxylase; Whole-cell catalysis; β-Alanine
المشرفين على المادة: EC 4.1.1.11 (aspartate-alpha-decarboxylase)
0 (Isoenzymes)
EC 4.1.1.15 (Glutamate Decarboxylase)
30KYC7MIAI (Aspartic Acid)
11P2JDE17B (beta-Alanine)
تواريخ الأحداث: Date Created: 20221213 Date Completed: 20221215 Latest Revision: 20221221
رمز التحديث: 20240628
DOI: 10.1007/s11274-022-03483-2
PMID: 36513951
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-0972
DOI:10.1007/s11274-022-03483-2