دورية أكاديمية

Medication with fenbendazole in feed: plasma concentrations and effects on hepatic xenobiotic metabolizing enzymes in swine.

التفاصيل البيبلوغرافية
العنوان: Medication with fenbendazole in feed: plasma concentrations and effects on hepatic xenobiotic metabolizing enzymes in swine.
المؤلفون: Ichinose P; Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina. paulaichinose@vet.unicen.edu.ar.; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina. paulaichinose@vet.unicen.edu.ar., Miró MV; Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina., Larsen K; Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina., Lanusse C; Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina., Lifschitz A; Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina., Virkel G; Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina. gvirkel@vet.unicen.edu.ar.; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina. gvirkel@vet.unicen.edu.ar.
المصدر: Veterinary research communications [Vet Res Commun] 2023 Jun; Vol. 47 (2), pp. 803-815. Date of Electronic Publication: 2022 Dec 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 8100520 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-7446 (Electronic) Linking ISSN: 01657380 NLM ISO Abbreviation: Vet Res Commun Subsets: MEDLINE
أسماء مطبوعة: Publication: [Cham] : Springer
Original Publication: [Amsterdam] : Elsevier, 1980-
مواضيع طبية MeSH: Fenbendazole*/pharmacology , Fenbendazole*/metabolism , Anthelmintics*/pharmacology , Anthelmintics*/metabolism, Animals ; Female ; Swine ; Xenobiotics/metabolism ; Liver/metabolism
مستخلص: Fenbendazole (FBZ), a benzymidazole (BZD) anthelmintic drug, is used for in-feed medication in pigs. BZD-containing drugs may induce cytochrome P450 isozymes (CYPs), particularly those members of the CYP1A subfamily. The current research evaluated the plasma and liver availability and metabolism of FBZ and its metabolites, oxfendazole (OFZ) and fenbendazole sulphone (FBZSO 2 ), after the administration of the parent drug in feed, and characterized the effect of the sustained administration of the anthelmintic on the catalytic activities of xenobiotic metabolizing enzymes in pig liver. Five female Landrace piglets remained untreated (controls), and other six were treated with a pre-mix of FBZ, combined with feed, for 9 consecutive days as usually is recommended. Blood samples were collected from each treated animal up to day 9 and analyzed by HPLC; all animals were slaughtered for preparation of liver microsomes. Plasma concentration ratios OFZ/FBZ and FBZSO 2 /OFZ increased significantly (p < 0.05) from the beginning to the end of drug exposure, which may indicate an enhanced conversion of FBZ into its metabolites. FBZ represented 45.8 ± 3.4% of the total anthelmintic molecules in liver tissue. Increased CYP1A-dependent 7-ethoxy (24.5-fold, p = 0.0032) and 7-methoxyresorufin (17.2-fold, p = 0.0006) O-dealkylase activities was observed in liver microsomes from FBZ-treated animals. In addition, a 64% increase (p = 0.042) in the rate of FBZ S-oxidation was observed in pigs treated with the anthelmintic drug compared to that measured in untreated animals. Thus, the continuous FBZ administration may accelerate its own in vivo hepatic metabolism through the CYP1A pathway.
(© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Achour B, Barber J, Rostami-Hodjegan A (2011) Cytochrome P450 Pig liver pie: determination of individual cytochrome P450 isoform contents in microsomes from two pig livers using liquid chromatography in conjunction with mass spectrometry [corrected] [published correction appears in Drug Metab Dispos. 2012 Jan;40(1):227]. Drug Metab Dispos; 39(11):2130–2134. https://doi.org/10.1124/dmd.111.040618.
Asteinza J, Camacho-Carranza R, Reyes-Reyes RE, Dorado-González VV, Espinosa-Aguirre JJ (2000) Induction of cytochrome P450 enzymes by albendazole treatment in the rat. Environ Toxicol Pharmacol 9(1–2):31–37. https://doi.org/10.1016/s1382-6689(00)00059-4. (PMID: 10.1016/s1382-6689(00)00059-411137466)
Backlund M, Weidolf L, Ingelman-Sundberg M (1999) Structural and mechanistic aspects of transcriptional induction of cytochrome P450 1A1 by benzimidazole derivatives in rat hepatoma H4IIE cells. Eur J Biochem 261(1):66–71. https://doi.org/10.1046/j.1432-1327.1999.00225.x. (PMID: 10.1046/j.1432-1327.1999.00225.x10103034)
Baliharová V, Skálová L, Maas RF, De Vrieze G, Bull S, Fink-Gremmels J (2003) The effects of mebendazole on P4501A activity in rat hepatocytes and HepG2 cells. Comparison with tiabendazole and omeprazole. J Pharm Pharmacol 55(6):773–781. https://doi.org/10.1211/002235703765951375. (PMID: 10.1211/00223570376595137512841937)
Baliharová V, Velík J, Savlík M et al (2004) The effects of fenbendazole, flubendazole and mebendazole on activities of hepatic cytochromes P450 in pig. J Vet Pharmacol Ther 27(2):85–90. https://doi.org/10.1111/j.1365-2885.2004.00557.x. (PMID: 10.1111/j.1365-2885.2004.00557.x15096105)
Bock W, Clausruch UCW, Kaufmann R, Lilenblum W, Oesch F, Pfeil H, Platt L (1979) Functional heterogeneity of UDP-glucuronyltransferase in rat tissues. Biochem Pharmacology; 29:495–500. (PMID: 10.1016/0006-2952(80)90368-8)
Burke MD, Mayer RT (1974) Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metab Dispos 2(6):583–588. (PMID: 4155680)
Cantiello M, Carletti M, Giantin M, Capolongo F, Cascio P, Pauletto M, Girolami F, Dacasto M, Nebbia C (2022) Induction by Phenobarbital of Phase I and II xenobiotic-metabolizing enzymes in bovine liver: an overall Catalytic and Immunochemical characterization. Int J Mol Sci 23(7):3564. https://doi.org/10.3390/ijms23073564. (PMID: 10.3390/ijms23073564354089258998613)
Capolongo F, Santi A, Anfossi P, Montesissa C (2010) Benzydamine as a useful substrate of hepatic flavin-containing monooxygenase activity in veterinary species. J Vet Pharmacol Ther 33(4):341–346. https://doi.org/10.1111/j.1365-2885.2009.01145.x. (PMID: 10.1111/j.1365-2885.2009.01145.x20646194)
Ceballos L, Canton C, Cadenazzi G, Virkel G, Dominguez P, Moreno L, Lanusse C, Alvarez L (2019) Oxfendazole kinetics in pigs: in vivo assessment of its pattern of accumulation in Ascaris suum. Exp Parasitol; 199:52–58. https://doi.org/10.1016/j.exppara.2019.02.017. (PMID: 10.1016/j.exppara.2019.02.01730831078)
Chirulli V, Marvasi L, Zaghini A, Fiorio R, Longo V, Gervasi G (2007) Inducibility of AhR-regulated CYP genes by beta-naphthoflavone in the liver, lung, kidney and heart of the pig. Toxicol; 240:25–37. https://doi.org/10.1016/j.tox.2007.07.015. (PMID: 10.1016/j.tox.2007.07.015)
Deng J, Zhao L, Zhang NY, Karrow NA, Krumm CS, Qi DS, Sun LH (2018) Aflatoxin B 1 metabolism: regulation by phase I and II metabolizing enzymes and chemoprotective agents. Mutat Res Rev Mutat Res; 778:79–89. https://doi.org/10.1016/j.mrrev.2018.10.002. (PMID: 10.1016/j.mrrev.2018.10.00230454686)
Fink-Gremmels J (2008) Implications of hepatic cytochrome P450-related biotransformation processes in veterinary sciences. Eur J Pharmacol 585:502–509. (PMID: 10.1016/j.ejphar.2008.03.01318417118)
Gibaldi M, Perrier D (1982) Pharmacokinetics, 2nd edn. Marcel Dekker, NewYork (USA), pp 145–198.
Gleizes C, Eeckhoutte C, Pineau T, Alvinerie M, Galtier P (1991) Inducing effect of oxfendazole on cytochrome P450IA2 in rabbit liver. Consequences on cytochrome P450 dependent monooxygenases. Biochem Pharmacol; 41(12):1813–1820. https://doi.org/10.1016/0006-2952(91)90119-p. (PMID: 10.1016/0006-2952(91)90119-p2039538)
Gleizes-Escala C, Lesca P, Larrieu G, Dupuy J, Pineau T, Galtier P (1996) Effect of exposure of rabbit hepatocytes to sulfur-containing anthelmintics (oxfendazole and fenbendazole) on cytochrome P4501A1 expression. Toxicol In Vitro; 10(2):129–139. https://doi.org/10.1016/0887-2333(95)00117-4. (PMID: 10.1016/0887-2333(95)00117-420650191)
Graham MJ, Lake BG (2008) Induction of drug metabolism: species differences and toxicological relevance. Toxicology 254(3):184–191. https://doi.org/10.1016/j.tox.2008.09.002. (PMID: 10.1016/j.tox.2008.09.00218824059)
Guengerich FP (1997) Comparison of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact 106:161–182. https://doi.org/10.1016/s0009-2797(97)00068-9. (PMID: 10.1016/s0009-2797(97)00068-99413544)
Gusson F, Carletti M, Albo AG, Dacasto M, Nebbia C (2006) Comparison of hydrolytic and conjugative biotransformation pathways in horse, cattle, pig, broiler chick, rabbit and rat liver subcellullar fractions. Vet Res Commun 30(3):271–283. https://doi.org/10.1007/s11259-006-3247-y. (PMID: 10.1007/s11259-006-3247-y16437303)
Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139. https://doi.org/10.1016/j.ijpddr.2014.03.003. (PMID: 10.1016/j.ijpddr.2014.03.0034436300)
Hansen T, Friis C, Nejsum P, Olsen A, Thamsborg S (2014) Uptake of benzimidazoles by Trichuris suis in vivo in pigs. Int J Parasitol 4:112–117.
Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857. (PMID: 10.1146/annurev.pharmtox.45.120403.09585715822171)
Howard JT, O’Nan AT, Maltecca C, Baynes RE, Ashwell MS (2015) Differential Gene expression across breed and sex in Commercial Pigs Administered Fenbendazole and Flunixin Meglumine. PLoS ONE 10(9):1–15. https://doi.org/10.1371/journal.pone.0137830. (PMID: 10.1371/journal.pone.0137830)
Ioannides C (2006) Cytochrome p450 expression in the liver of food-producing animals. Curr Drug Metab 7(4):335–348. https://doi.org/10.2174/138920006776873544. (PMID: 10.2174/13892000677687354416724924)
Ionescu C, Caira M (2005) Drug Metabolism: Current concepts. Chapter 5. Induction and inhibition of drug-metabolising enzymes. Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. ISBN-13 978-1-4020-4142-6 (e-book).
Jacela JY, DeRouchey JM, Tokach MD, Goodband R, Nelssen J, Renter D, Dritz S (2009) Feed additives for swine: fact sheets – carcass modifiers, carbohydrate-degrading enzymes and proteases, and anthelmintics. J Swine Health Prod 17(6):325–332.
Katchamart S, Stresser DM, Dehal SS, Kupfer D, Williams DE (2000) Concurrent flavin-containing monooxygenase down-regulation and cytochrome P-450 induction by dietary indoles in rat: implications for drug-drug interaction. Drug Metab Dispos 28(8):930–936. (PMID: 10901703)
Knight TR, Choudhuri S, Klaassen CD (2008) Induction of hepatic glutathione S-transferases in male mice by prototypes of various classes of microsomal enzyme inducers. Toxicol Sci; 106(2):329–338. https://doi.org/10.1093/toxsci/kfn179. (PMID: 10.1093/toxsci/kfn179187238252581675)
Kojima M, Morozumi T (2004) Cloning of six full-length cDNAs encoding pig cytochrome P450 enzymes and gene expression of these enzymes in the liver and kidney. J Health Sci 50(5):518–529. https://doi.org/10.1248/jhs.50.518. (PMID: 10.1248/jhs.50.518)
Kojima M, Degawa M (2016) Sex differences in constitutive mRNA levels of CYP2B22, CYP2C33, CYP2C49, CYP3A22, CYP3A29 and CYP3A46 in the pig liver: comparison between Meishan and Landrace pigs. Drug Metab Pharmacokinet 31(3):185–192. https://doi.org/10.1016/j.dmpk.2016.02.001. (PMID: 10.1016/j.dmpk.2016.02.00127080814)
Lanusse C, Canton C, Virkel G, Alvarez L, Costa-Junior L, Lifschitz A (2018) Strategies to optimize the efficacy of anthelmintic drugs in ruminants. Trends Parasitol 34(8):664–682. https://doi.org/10.1016/j.pt.2018.05.005. (PMID: 10.1016/j.pt.2018.05.00529960843)
Lassen B, Oliviero C, Orro T, Jukola E, Laurila T, Haimi-Hakala M, Heinonen M (2017) Effect of fenbendazole in water on pigs infected with Ascaris suum in finishing pigs under field conditions. Vet Parasitol 237:1–7. https://doi.org/10.1016/j.vetpar.2017.03.005. (PMID: 10.1016/j.vetpar.2017.03.00528285891)
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275. (PMID: 10.1016/S0021-9258(19)52451-614907713)
Malekinejad H, Maas-Bakker R, Fink-Gremmels J (2006) Species differences in the hepatic biotransformation of zearalenone. Vet J 172(1):96–102. https://doi.org/10.1016/j.tvjl.2005.03.004. (PMID: 10.1016/j.tvjl.2005.03.00415907386)
Maté L, Giantin M, Viviani P, Ballent M, Tolosi R, Lifschitz A, Lanusse C, Dacasto M, Virkel G (2019) Effects of fenbendazole and triclabendazole on the expression of cytochrome P450 1A and flavin-monooxygenase isozymes in bovine precision-cut liver slices. Vet J; 245:61–69. https://doi.org/10.1016/j.tvjl.2019.01.001. (PMID: 10.1016/j.tvjl.2019.01.00130819427)
Maté L, Virkel G, Lifschitz A, Ballent M, Lanusse C (2008) Hepatic and extra-hepatic metabolic pathways involved in flubendazole biotransformation in sheep. Biochem Pharmacol 76(6):773–783. https://doi.org/10.1016/j.bcp.2008.07.002. (PMID: 10.1016/j.bcp.2008.07.00218671949)
Matsubara T, Koike M, Touchi A, Tochino Y, Sugeno K (1976) Quantitative determination of cytochrome P-450 in rat liver homogenate. Anal Biochem 75(2):596–603. https://doi.org/10.1016/0003-2697(76)90114-7. (PMID: 10.1016/0003-2697(76)90114-7984414)
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI (2019) The UDP-glycosyltransferase (UGT) superfamily: new members, new functions, and novel paradigms. Physiol Rev 99(2):1153–1222. https://doi.org/10.1152/physrev.00058.2017. (PMID: 10.1152/physrev.00058.201730724669)
Messina A, Puccinelli E, Gervasi PG, Longo V (2013) Expression and inducibility of CYP1A1, 1A2, 1B1 by β-naphthoflavone and CYP2B22, CYP3As by rifampicin in heart regions and coronary arteries of pig. Res Vet Sci 94(1):77–83. https://doi.org/10.1016/j.rvsc.2012.07.015. (PMID: 10.1016/j.rvsc.2012.07.01522889553)
Meyer UA (1996) Metabolic interactions of the proton-pump inhibitors lansoprazole, omeprazole and pantoprazole with other drugs. Eur J Gastroenterol Hepatol 8(Suppl 1):S21–S25. https://doi.org/10.1097/00042737-199610001-00005. (PMID: 10.1097/00042737-199610001-000058930576)
Montesissa C, Stracciari JM, Fadini L, Beretta C (1989) Comparative microsomal oxidation of febantel and its metabolite fenbendazole in various animal species. Xenobiotica 19(1):97–100. https://doi.org/10.3109/00498258909034681. (PMID: 10.3109/004982589090346812756722)
Moreno L, Lopez-Urbina MT, Farias C, Domingue G, Donadeu M, Dungu B, García HH, Gomez-Puerta LA, Lanusse C, González AE (2012) A high oxfendazole dose to control porcine cysticercosis: pharmacokinetics and tissue residue profiles. Food Chem Toxicol 50(10):3819–3825. https://doi.org/10.1016/j.fct.2012.07.023. (PMID: 10.1016/j.fct.2012.07.02322841955)
Murray M, Hudson A, Yassa V (1992) Hepatic microsomal metabolism of the anthelmintic benzimidazole fenbendazole: enhanced inhibition of cytochrome P450 reactions by oxidized metabolites of the drug. Chem Res Toxicol 5(1):60–66. https://doi.org/10.1021/tx00025a010. (PMID: 10.1021/tx00025a0101581538)
Nannelli A, Chirulli V, Longo V, Gervasi PG (2008) Expression and induction by rifampicin of CAR- and PXR-regulated CYP2B and CYP3A in liver, kidney and airways of pig. Toxicology 252(1–3):105–112. https://doi.org/10.1016/j.tox.2008.08.004. (PMID: 10.1016/j.tox.2008.08.00418786598)
Nebbia C (2001) Biotransformation enzymes as determinants of xenobiotic toxicity in domestic animals. Vet J 161:238–252. . doi:10.1053/tvjl.2000.0561. (PMID: 10.1053/tvjl.2000.056111352482)
Nebbia C, Dacasto M, Rossetto Giaccherino A, Giuliano Albo A, Carletti M (2003) Comparative expression of liver cytochrome P450-dependent monooxygenases in the horse and in other agricultural and laboratory species. Vet J 165(1):53–64. https://doi.org/10.1016/s1090-0233(02)00174-0. (PMID: 10.1016/s1090-0233(02)00174-012618071)
Pegolo S, Merlanti R, Giantin M, Dacasto M, Montesissa C, Capolongo F (2010a) High performance liquid chromatography determination of cytochrome P450 1A and 2 C activities in bovine liver microsomes. Vet J 183(1):81–88. https://doi.org/10.1016/j.tvjl.2008.08.006. (PMID: 10.1016/j.tvjl.2008.08.00618815059)
Pegolo S, Giantin M, Dacasto M, Montesissa C, Capolongo F (2010b) Testosterone hydroxylation in bovine liver: enzyme kinetic and inhibition study. Xenobiotica 40(4):255–261. https://doi.org/10.3109/00498250903540875. (PMID: 10.3109/0049825090354087520088676)
Petersen MB, Friis C (2000) Pharmacokinetics of fenbendazole following intravenous and oral administration to pigs. Am J Vet Res 61(5):573–576. https://doi.org/10.2460/ajvr.2000.61.573. (PMID: 10.2460/ajvr.2000.61.57310803655)
Phillips IR, Shephard EA (2017) Drug metabolism by flavin-containing monooxygenases of human and mouse. Expert Opin Drug Metab Toxicol 13(2):167–181. https://doi.org/10.1080/17425255.2017.1239718. (PMID: 10.1080/17425255.2017.123971827678284)
Puccinelli E, Gervasi PG, Longo V (2011) Xenobiotic metabolizing cytochrome P450 in pig, a promising animal model. Curr Drug Metab 12(6):507–525. https://doi.org/10.2174/138920011795713698. (PMID: 10.2174/13892001179571369821476973)
Rasmussen MK (2020) Porcine cytochrome P450 3A: current status on expression and regulation. Arch Toxicol 94(6):1899–1914. https://doi.org/10.1007/s00204-020-02710-9. (PMID: 10.1007/s00204-020-02710-932172306)
Rolin S, Souhaili-el Amri H, Batt AM, Levy M, Bagrel D, Siest G (1989) Study of the in vitro bioactivation of albendazole in human liver microsomes and hepatoma cell lines. Cell Biol Toxicol 5(1):1–14. https://doi.org/10.1007/BF00141060. (PMID: 10.1007/BF001410602563953)
Rowland A, Miners JO, Mackenzie PI (2013) The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 45(6):1121–1132. https://doi.org/10.1016/j.biocel.2013.02.019. (PMID: 10.1016/j.biocel.2013.02.01923500526)
Souhaili-el Amri H, Fargetton X, Delatour P, Batt AM (1987) Sulphoxidation of albendazole by the FAD-containing and cytochrome P-450 dependent mono-oxygenases from pig liver microsomes. Xenobiotica; 17(10):1159–1168. https://doi.org/10.3109/00498258709167408. (PMID: 10.3109/00498258709167408)
Souhaili-el Amri H, Fargetton X, Benoit E, Totis M, Batt AM (1988) Inducing effect of albendazole on rat liver drug-metabolizing enzymes and metabolite pharmacokinetics. Toxicol Appl Pharmacol 92(1):141–149. https://doi.org/10.1016/0041-008x(88)90236-0. (PMID: 10.1016/0041-008x(88)90236-03341022)
Szotáková B, Baliharová V, Lamka J, Nozinová E, Wsól V, Velík J, Machala M, Neca J, Soucek P, Susová S, Skálová L (2004) Comparison of in vitro activities of biotransformation enzymes in pig, cattle, goat and sheep. Res Vet Sci 76(1):43–51. https://doi.org/10.1016/s0034-5288(03)00143-7. (PMID: 10.1016/s0034-5288(03)00143-714659728)
Tompkins LM, Wallace AD (2007) Mechanisms of cytochrome P450 induction. J Biochem Mol Toxicol 21(4):176–181. https://doi.org/10.1002/jbt.20180. (PMID: 10.1002/jbt.2018017936931)
Turpeinen M, Ghiciuc C, Opritoui M, Tursas L, Pelkonen O, Pasanen M (2007) Predictive value of animal models for human cytochrome P450 (CYP)-mediated metabolism: a comparative study in vitro. Xenobiotica 37(12):1367–1377. https://doi.org/10.1080/00498250701658312. (PMID: 10.1080/0049825070165831217943662)
Uno Y, Shimizu M, Ogawa Y, Makiguchi M, Kawaguchi H, Yamato O, Ishizuka M, Yamazaki H (2022) Molecular and functional characterization of flavin-containing monooxygenases in pigs, dogs, and cats. Biochem Pharmacol 202:115125. https://doi.org/10.1016/j.bcp.2022.115125. (PMID: 10.1016/j.bcp.2022.11512535690111)
Vandael F, Filippitzi ME, Dewulf J, Daeseleire E, Eeckhout M, Devreese M, Croubels S (2019) Oral group medication in pig production: characterising medicated feed and drinking water systems. Vet Rec 185(13):405. https://doi.org/10.1136/vr.105495. (PMID: 10.1136/vr.10549531427411)
Velík J, Baliharová V, Fink-Gremmels J, Bull S, Lamka J, Skálová L (2004) Benzimidazole drugs and modulation of biotransformation enzymes. Res Vet Sci 76(2):95–108. https://doi.org/10.1016/j.rvsc.2003.08.005. (PMID: 10.1016/j.rvsc.2003.08.00514672851)
Virkel G, Lifschitz A, Sallovitz J, Pis A, Lanusse C (2004) Comparative hepatic and extrahepatic enantioselective sulfoxidation of albendazole and fenbendazole in sheep and cattle. Drug Metab Dispos 32(5):536–544. https://doi.org/10.1124/dmd.32.5.536. (PMID: 10.1124/dmd.32.5.53615100176)
Wang X, Yang Y, Martínez MA, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I (2021) Interaction between florfenicol and doxycycline involving cytochrome P450 3A in goats (Capra hricus). Front Vet Sci 8:759716. https://doi.org/10.3389/fvets.2021.759716. (PMID: 10.3389/fvets.2021.759716347339098558239)
Zhang L, Wang X, Wang L, Badawy S, Liu Z, Xie C, Wang X, Tao Y (2022) A new drug-drug interaction-tilmicosin reduces the metabolism of enrofloxacin through CYP3A4. Res Vet Sci 148:33–41. https://doi.org/10.1016/j.rvsc.2022.05.004. (PMID: 10.1016/j.rvsc.2022.05.00435660543)
Ziegler DM (2002) An overview of the mechanism, substrate specificities, and structure of FMOs. Drug Metab Rev 34(3):503–511. https://doi.org/10.1081/dmr-120005650. (PMID: 10.1081/dmr-12000565012214662)
معلومات مُعتمدة: PIP 2021-2023 - 11220200101380CO Consejo Nacional de Investigaciones Científicas y Técnicas; PICT 2018-0830 Fondo para la Investigación Científica y Tecnológica
فهرسة مساهمة: Keywords: Feeding; Fenbendazole; Hepatic cytochrome P450; Metabolites; Pigs; Plasma concentrations
المشرفين على المادة: 621BVT9M36 (Fenbendazole)
0 (Xenobiotics)
0 (Anthelmintics)
تواريخ الأحداث: Date Created: 20221221 Date Completed: 20230526 Latest Revision: 20230526
رمز التحديث: 20231215
DOI: 10.1007/s11259-022-10041-6
PMID: 36542192
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-7446
DOI:10.1007/s11259-022-10041-6