دورية أكاديمية

Characterization and in vivo toxicological evaluation of multi-walled carbon nanotubes: a low-dose repeated intratracheal administration study.

التفاصيل البيبلوغرافية
العنوان: Characterization and in vivo toxicological evaluation of multi-walled carbon nanotubes: a low-dose repeated intratracheal administration study.
المؤلفون: Bubols GB; Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil.; Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil., Arbo MD; Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil.; Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil., Peruzzi CP; Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil.; Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil., Cestonaro LV; Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil.; Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil., Altknecht LF; Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil., Fão N; Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil.; Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil., Göethel G; Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil.; Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil., Nascimento SN; Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil.; Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil., Paese K; Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.; Laboratório 405 de Nanotecnologia, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil., Amaral MG; Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil., Bergmann CP; Laboratório de Materiais Cerâmicos (LACER), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil., Pohlmann AR; Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.; Instituto de Química, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil., Guterres SS; Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.; Laboratório 405 de Nanotecnologia, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil., Garcia SC; Laboratório de Toxicologia (LATOX), Faculdade de Farmácia, Anexo II, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua São Luis, 150, Anexo II, Santana, Porto Alegre, CEP: 90620-170, Brazil. solange.garcia@ufrgs.br.; Programa de Pós-Graduação Em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil. solange.garcia@ufrgs.br.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Mar; Vol. 30 (13), pp. 36405-36421. Date of Electronic Publication: 2022 Dec 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Nanotubes, Carbon*/toxicity , Pulmonary Fibrosis*/pathology, Animals ; Lung ; Time Factors ; Bronchoalveolar Lavage Fluid
مستخلص: This study characterized and investigated the toxicity of two multi-walled carbon nanotubes (MWCNT) NM-401 and NM-403 at 60 and 180 µg after four repeated intratracheal instillations; follow-up times were 3, 7, 30, and 90 days after the last instillation. NM-401 was needle-like, long, and thick, while NM-403 was entangled, short, and thin. Both MWCNT types induced transient pulmonary and systemic alterations in renal function and oxidative lipid damage markers in recent times. Animals showed general toxicity in the immediate times after exposures, in addition to increased pulmonary LDH release at day 3. In further times, decreased liver and kidney relative weights were noted at higher MWCNT doses. Lung histological damages included pulmonary fibrosis, for both MWCNT types, similarly to asbestos; single liver and kidney histological alterations were present. Repeated instillations led to persistent pulmonary damage at low doses, and possibly the extrapulmonary effects may be associated with the consecutive exposures.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Al-Hallak MHDK, Azarmi S, Sun C, Lai P, Prenner EJ, Roa WH, Löbenberg R (2010) Pulmonary toxicity of polysorbate-80-coated inhalable nanoparticles; in vitro and in vivo evaluation. AAPS J 12:294–299. https://doi.org/10.1208/s12248-010-9190-4. (PMID: 10.1208/s12248-010-9190-4)
Atchudan R, Cha BG, Lone N, Kim J, Joo J (2019) Synthesis of high-quality carbon nanotubes by using monodisperse spherical mesoporous silica encapsulating iron oxide nanoparticles. Korean J Chem Eng 36:157–165. https://doi.org/10.1007/s11814-018-0200-z. (PMID: 10.1007/s11814-018-0200-z)
Boysen G (2017) The glutathione conundrum: stoichiometric disconnect between its formation and oxidative stress. Chem Res Toxicol 30:1113–1116. https://doi.org/10.1021/acs.chemrestox.7b00018. (PMID: 10.1021/acs.chemrestox.7b00018)
Dong J, Ma Q (2015) Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology 9:658–676. https://doi.org/10.3109/17435390.2015.1009187. (PMID: 10.3109/17435390.2015.1009187)
Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6. (PMID: 10.1016/0003-9861(59)90090-6)
Garcia SC, Grotto D, Bulcão RP, Moro AM, Roehrs M, Valentini J, de Freitas FA, Paniz C, Bubols GB, Charão MF (2013) Evaluation of lipid damage related to pathological and physiological conditions. Drug Chem Toxicol 36:306–312. https://doi.org/10.3109/01480545.2012.720989. (PMID: 10.3109/01480545.2012.720989)
Gaté L, Knudsen KB, Seidel C, Berthing T, Chézeau L, Jacobsen NR, Valentino S, Wallin H, Bau S, Wolff H, Sébillaud S, Lorcin M, Grossmann S, Viton S, Nunge H, Darne C, Vogel U, Cosnier F (2019) Pulmonary toxicity of two different multi-walled carbon nanotubes in rat: comparison between intratracheal instillation and inhalation exposure. Toxicol Appl Pharmacol 375:17–31. https://doi.org/10.1016/j.taap.2019.05.001. (PMID: 10.1016/j.taap.2019.05.001)
Giknis MLA, Clifford CB (2006) Clinical laboratory parameters for Crl:CD(SD) Rats. Charles River Laboratories. https://www.criver.com/sites/default/files/resources/rm&#95;rm&#95;r&#95;clinical&#95;parameters&#95;cd&#95;rat&#95;06.pdf . Accessed 21 Dec 2022.
Grotto D, Santa Maria LD, Boeira S, Valentini J, Charão MF, Moro AM, Nascimento PC, Pomblum VJ, Garcia SC (2007) Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J Pharm Biomed Anal 43:619–624. https://doi.org/10.1016/j.jpba.2006.07.030. (PMID: 10.1016/j.jpba.2006.07.030)
Gupta SS, Singh KP, Gupta S, Dusinska M, Rahman Q (2022) Do carbon nanotubes and asbestos fibers exhibit common toxicity mechanisms? Nanomaterials (basel). https://doi.org/10.3390/nano12101708. (PMID: 10.3390/nano12101708)
Hadrup N, Bengtson S, Jacobsen NR, Jackson P, Nocun M, Saber AT, Jensen KA, Wallin H, Vogel U (2017) Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles. Mutagenesis 32:581–597. https://doi.org/10.1093/mutage/gex042. (PMID: 10.1093/mutage/gex042)
Hojo M, Maeno A, Sakamoto Y, Ohnuki A, Tada Y, Yamamoto Y, Ikushima K, Inaba R, Suzuki J, Taquahashi Y, Yokota S, Kobayashi N, Ohnishi M, Goto Y, Numano T, Tsuda H, Alexander DB, Kanno J, Hirose A, Inomata A, Nakae D (2022) Two-year intermittent exposure of a multiwalled carbon nanotube by intratracheal instillation induces lung tumors and pleural mesotheliomas in F344 rats. Part Fibre Toxicol. https://doi.org/10.1186/s12989-022-00478-7. (PMID: 10.1186/s12989-022-00478-7)
Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H, Vogel U (2015) Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line. Environ Mol Mutagen 56:183–203. https://doi.org/10.1002/em.21922. (PMID: 10.1002/em.21922)
Jacobsen NR, Moller P, Clausen PA, Saber AT, Micheletti C, Jensen KA, Wallin H, Vogel U (2017) Biodistribution of carbon nanotubes in animal models. Basic Clin Pharmacol Toxicol 121:30–43. https://doi.org/10.1111/bcpt.12705. (PMID: 10.1111/bcpt.12705)
Jensen KA, Bøgelund J, Jackson P, Jacobsen NR, Birkedal R, Clausen PA, Saber AT, Wallin H, Vogel UB (2015) The Danish Environmental Protection Agency. Carbon Nanotubes. Types, products, market, and provisional assessment of the associated risks to man and the environment. Environmental Project No. 1805. https://www2.mst.dk/Udgiv/publications/2015/12/978-87-93352-98-8.pdf . Accessed 12 March 2022.
Jensen KA (2014) The ENPRA dispersion protocol for NANoREG. Version 1.0. http://safenano.re.kr/download.do?SEQ=174 . Accessed 12 March 2022.
Jensen KA (2015) NRCWE SOP for measurement of hydrodynamic size-distribution and dispersion stability by dynamic light scattering (DLS). http://portal.s2nano.org:8282/files/DLS&#95;Protocol&#95;nanoReg.pdf . Accessed 12 March 2022.
Johansson HKL, Hansen JS, Elfving B, Lund SP, Kyjovska ZO, Loft S, Barfod KK, Jackson P, Vogel U, Hougaard KS (2017) Airway exposure to multi-walled carbon nanotubes disrupts the female reproductive cycle without affecting pregnancy outcomes in mice. Part Fibre Toxicol. https://doi.org/10.1186/s12989-017-0197-1. (PMID: 10.1186/s12989-017-0197-1)
Kavosi A, Hosseini Ghale Noei S, Madani S, Khalighfard S, Khodayari S, Khodayari H, Mirzaei M, Kalhori MR, Yavarian M, Alizadeh AM, Falahati M (2018) The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci Rep. https://doi.org/10.1038/s41598-018-26790-x. (PMID: 10.1038/s41598-018-26790-x)
Knudsen KB, Berthing T, Jackson P, Poulsen SS, Mortensen A, Jacobsen NR, Skaug V, Szarek J, Hougaard KS, Wolff H, Wallin H, Vogel U (2019) Physicochemical predictors of multi-walled carbon nanotube-induced pulmonary histopathology and toxicity one year after pulmonary deposition of 11 different Multi-Walled Carbon Nanotubes in mice. Basic Clin Pharmacol Toxicol 124:211–227. https://doi.org/10.1111/bcpt.13119. (PMID: 10.1111/bcpt.13119)
Kobayashi N, Naya M, Mizuno K, Yamamoto K, Ema M, Nakanishi J (2011) Pulmonary and systemic responses of highly pure and well-dispersed single-wall carbon nanotubes after intratracheal instillation in rats. Inhal Toxicol 23:814–828. https://doi.org/10.3109/08958378.2011.614968. (PMID: 10.3109/08958378.2011.614968)
Kuroda C, Haniu H, Ajima K, Tanaka M, Sobajima A, Ishida H, Tsukahara T, Matsuda Y, Aoki K, Kato H, Saito N (2016) The dispersion state of tangled multi-walled carbon nanotubes affects their cytotoxicity. Nanomaterials (basel). https://doi.org/10.3390/nano6110219. (PMID: 10.3390/nano6110219)
Mohanta D, Patnaik S, Sood S, Das N (2019) Carbon nanotubes: evaluation of toxicity at biointerfaces. J Pharm Anal 9:293–300. https://doi.org/10.1016/j.jpha.2019.04.003. (PMID: 10.1016/j.jpha.2019.04.003)
National Research Council (NRC) (2011) Environment, housing, and management. In: Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington (DC). https://www.ncbi.nlm.nih.gov/books/NBK54046/ . Accessed 12 March 2022.
NIOSH (2013) Current Intelligence Bulletin 65: Occupational exposure to carbon nanotubes and nanofibers. DHHS (NIOSH), Publication number 2013–145. https://www.cdc.gov/niosh/docs/2013-145/default.html . Accessed 12 March 2022.
Oberdörster G, Castranova V, Asgharian B, Sayre P (2015) Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): methodology and dosimetry. J Toxicol Environ Health B Crit Rev 18:121–212. https://doi.org/10.1080/10937404.2015.1051611. (PMID: 10.1080/10937404.2015.1051611)
Pauluhn J (2010) Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113:226–242. https://doi.org/10.1093/toxsci/kfp247. (PMID: 10.1093/toxsci/kfp247)
Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157. https://doi.org/10.1016/j.freeradbiomed.2014.11.013. (PMID: 10.1016/j.freeradbiomed.2014.11.013)
Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V (2010) Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269:136–147. https://doi.org/10.1016/j.tox.2009.10.017. (PMID: 10.1016/j.tox.2009.10.017)
Poulsen SS, Saber AT, Williams A, Andersen O, Købler C, Atluri R, Pozzebon ME, Mucelli SP, Simion M, Rickerby D, Mortensen A, Jackson P, Kyjovska ZO, Mølhave K, Jacobsen NR, Jensen KA, Yauk CL, Wallin H, Halappanavar S, Vogel U (2015) MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284:16–32. https://doi.org/10.1016/j.taap.2014.12.011. (PMID: 10.1016/j.taap.2014.12.011)
Poulsen SS, Knudsen KB, Jackson P, Weydahl IE, Saber AT, Wallin H, Vogel U (2017) Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice. PLoS One. https://doi.org/10.1371/journal.pone.0174167. (PMID: 10.1371/journal.pone.0174167)
Rahman L, Jacobsen NR, Aziz SA, Wu D, Williams A, Yauk CL, White P, Wallin H, Vogel U, Halappanavar S (2017) Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: investigating the mechanisms of pulmonary carcinogenesis. Mutat Res 823:28–44. https://doi.org/10.1016/j.mrgentox.2017.08.005. (PMID: 10.1016/j.mrgentox.2017.08.005)
Rasmussen K, Mast J, De Temmerman P, Verleysen E, Waegeneers N, Van Steen F, Pizzolon J, De Temmerman L, Van Doren E, Jensen K, Birkedal R, Clausen P, Kembouche Y, Thieriet N, Spalla O, Giuot C, Rousset D, Witschger O, Bau S, Bianchi B, Shivachev B, Dimowa L, Nikolova R, Nihtianova D, Tarassov M, Petrov O, Bakardjieva S, Motzkus C, Labarraque G, Oster C, Cotogno G, Gaillard C (2014) Multi-walled carbon nanotubes, NM-400, NM-401, NM-402, NM-403: characterization and physico-chemical properties. Publications Office of the European Union. https://publications.jrc.ec.europa.eu/repository/handle/JRC91205 . Accessed 12 March 2022.
Reddy AR, Rao MV, Krishna DR, Himabindu V, Reddy YN (2011) Evaluation of oxidative stress and anti-oxidant status in rat serum following exposure of carbon nanotubes. Regul Toxicol Pharmacol 59:251–257. https://doi.org/10.1016/j.yrtph.2010.10.007. (PMID: 10.1016/j.yrtph.2010.10.007)
Reddy AR, Reddy YN, Krishna DR, Himabindu V (2012) Pulmonary toxicity assessment of multiwalled carbon nanotubes in rats following intratracheal instillation. Environ Toxicol 27:211–219. https://doi.org/10.1002/tox.20632. (PMID: 10.1002/tox.20632)
Saleemi MA, Hosseini Fouladi M, Yong PVC, Chinna K, Palanisamy NK, Wong EH (2021) Toxicity of carbon nanotubes: molecular mechanisms, signaling cascades, and remedies in biomedical applications. Chem Res Toxicol 34:24–46. https://doi.org/10.1021/acs.chemrestox.0c00172. (PMID: 10.1021/acs.chemrestox.0c00172)
Sassa S (1982) δ-Aminolevulinic acid dehydratase assay. Enzyme 28:133–145. https://doi.org/10.1159/000459097. (PMID: 10.1159/000459097)
Simon J, Flahaut E, Golzio M (2019) Overview of carbon nanotubes for biomedical applications. Materials (basel). https://doi.org/10.3390/ma12040624. (PMID: 10.3390/ma12040624)
Tailor PM, Wheatley RJ, Besley NA (2018) Simulation of the Raman spectroscopy of multi-layered carbon nanomaterials. Phys Chem Chem Phys 20:28001–28010. https://doi.org/10.1039/c8cp05908j. (PMID: 10.1039/c8cp05908j)
Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, Walters DM, Wingard CJ, Brown JM (2011) Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol. https://doi.org/10.1186/1743-8977-8-24. (PMID: 10.1186/1743-8977-8-24)
معلومات مُعتمدة: 14/50928-2 Fundação de Amparo à Pesquisa do Estado de São Paulo; 465687/2014-8 Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Lung toxicity; MWCNT; NM-401; NM-403; Nanotoxicology; Rat
المشرفين على المادة: 0 (Nanotubes, Carbon)
تواريخ الأحداث: Date Created: 20221222 Date Completed: 20230329 Latest Revision: 20230329
رمز التحديث: 20240628
DOI: 10.1007/s11356-022-24653-7
PMID: 36547826
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-022-24653-7