دورية أكاديمية

Dirac spectroscopy of strongly correlated phases in twisted trilayer graphene.

التفاصيل البيبلوغرافية
العنوان: Dirac spectroscopy of strongly correlated phases in twisted trilayer graphene.
المؤلفون: Shen C; ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain. cheng.shen@icfo.eu., Ledwith PJ; Department of Physics, Harvard University, Cambridge, MA, USA., Watanabe K; National Institute for Materials Science, Tsukuba, Japan., Taniguchi T; National Institute for Materials Science, Tsukuba, Japan., Khalaf E; Department of Physics, Harvard University, Cambridge, MA, USA., Vishwanath A; Department of Physics, Harvard University, Cambridge, MA, USA., Efetov DK; ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain. dmitri.efetov@lmu.de.; Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, 80799 München, Germany. dmitri.efetov@lmu.de.; Munich Center for Quantum Science and Technology (MCQST), München, Germany. dmitri.efetov@lmu.de.
المصدر: Nature materials [Nat Mater] 2023 Mar; Vol. 22 (3), pp. 316-321. Date of Electronic Publication: 2022 Dec 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101155473 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4660 (Electronic) Linking ISSN: 14761122 NLM ISO Abbreviation: Nat Mater Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London, UK : Nature Pub. Group, [2002]-
مستخلص: Magic-angle twisted trilayer graphene (MATTG) hosts flat electronic bands, and exhibits correlated quantum phases with electrical tunability. In this work, we demonstrate a spectroscopy technique that allows for dissociation of intertwined bands and quantification of the energy gaps and Chern numbers C of the correlated states in MATTG by driving band crossings between Dirac cone Landau levels and energy gaps in the flat bands. We uncover hard correlated gaps with C = 0 at integer moiré unit cell fillings of ν = 2 and 3 and reveal charge density wave states originating from van Hove singularities at fractional fillings ν = 5/3 and 11/3. In addition, we demonstrate displacement-field-driven first-order phase transitions at charge neutrality and ν = 2, which are consistent with a theoretical strong-coupling analysis, implying C 2 T symmetry breaking. Overall, these properties establish a diverse electrically tunable phase diagram of MATTG and provide an avenue for investigating other related systems hosting both steep and flat bands.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). (PMID: 10.1038/nature26154)
Tang, Y. et al. Simulation of Hubbard model physics in WSe 2 /WS 2 moiré superlattices. Nature 579, 353–358 (2020). (PMID: 10.1038/s41586-020-2085-3)
Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020). (PMID: 10.1038/s41567-020-0825-9)
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe 2 /WS 2 moiré superlattices. Nature 579, 359–363 (2020). (PMID: 10.1038/s41586-020-2092-4)
Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020). (PMID: 10.1038/s41586-020-2260-6)
Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020). (PMID: 10.1038/s41586-020-2458-7)
Chen, S. et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys. 17, 374–380 (2021). (PMID: 10.1038/s41567-020-01062-6)
Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019). (PMID: 10.1038/s41567-018-0387-2)
Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020). (PMID: 10.1038/s41586-020-2963-8)
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). (PMID: 10.1038/nature26160)
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019). (PMID: 10.1126/science.aav1910)
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019). (PMID: 10.1038/s41586-019-1695-0)
Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science (1979) 365, 605–608 (2019).
Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020). (PMID: 10.1038/s41586-020-3028-8)
Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020). (PMID: 10.1038/s41586-020-2049-7)
Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900 (2020). (PMID: 10.1126/science.aay5533)
Das, I. et al. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys. 17, 710–714 (2021). (PMID: 10.1038/s41567-021-01186-3)
Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. 17, 478–481 (2021). (PMID: 10.1038/s41567-020-01129-4)
Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater. 20, 488–494 (2021). (PMID: 10.1038/s41563-020-00911-2)
Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene. Nature 592, 43–48 (2021). (PMID: 10.1038/s41586-021-03366-w)
Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021). (PMID: 10.1038/s41586-020-03159-7)
Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021). (PMID: 10.1038/s41586-021-03192-0)
Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021). (PMID: 10.1126/science.abg0399)
Cao, Y., Park, J. M., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Pauli-limit violation and re-entrant superconductivity in moiré graphene. Nature 595, 526–531 (2021). (PMID: 10.1038/s41586-021-03685-y)
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). (PMID: 10.1038/nature04233)
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005). (PMID: 10.1038/nature04235)
Pierce, A. T. et al. Unconventional sequence of correlated Chern insulators in magic-angle twisted bilayer graphene. Nat. Phys. 17, 1210–1215 (2021). (PMID: 10.1038/s41567-021-01347-4)
Kwan, Y. H. et al. Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene. Phys. Rev. X 11, 41063 (2021).
Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022). (PMID: 10.1038/s41586-022-04715-z)
Khalaf, E., Kruchkov, A. J., Tarnopolsky, G. & Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 100, 85109 (2019). (PMID: 10.1103/PhysRevB.100.085109)
Carr, S. et al. Ultraheavy and ultrarelativistic Dirac quasiparticles in sandwiched graphenes. Nano Lett. 20, 3030–3038 (2020). (PMID: 10.1021/acs.nanolett.9b04979)
Lei, C., Linhart, L., Qin, W., Libisch, F. & MacDonald, A. H. Mirror symmetry breaking and lateral stacking shifts in twisted trilayer graphene. Phys. Rev. B 104, 35139 (2021). (PMID: 10.1103/PhysRevB.104.035139)
Li, X., Wu, F. & MacDonald, A. H. Electronic structure of single-twist trilayer graphene. Preprint at https://arxiv.org/abs/1907.12338 (2019).
Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, 5299 (2021). (PMID: 10.1126/sciadv.abf5299)
Xie, F., Regnault, N., Călugăru, D., Bernevig, B. A. & Lian, B. Twisted symmetric trilayer graphene. II. Projected Hartree–Fock study. Phys. Rev. B 104, 115167 (2021). (PMID: 10.1103/PhysRevB.104.115167)
Christos, M., Sachdev, S. & Scheurer, M. S. Correlated insulators, semimetals, and superconductivity in twisted trilayer graphene. Phys. Rev. X 12, 021018 (2022).
Ledwith, P. J. et al. TB or not TB? Contrasting properties of twisted bilayer graphene and the alternating twist n-layer structures (n = 3, 4, 5,…). Preprint at https://arxiv.org/abs/2111.11060 (2021).
Lin, J.-X. et al. Spin-orbit–driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, eabh2889 (2022).
Huang, C., Wei, N., Qin, W. & MacDonald, A. Pseudospin paramagnons and the superconducting dome in magic angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2110.13351 (2021).
Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022). (PMID: 10.1038/s41563-022-01287-1)
Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science (1979) 377, 1538–1543 (2022).
تواريخ الأحداث: Date Created: 20221222 Date Completed: 20230303 Latest Revision: 20230303
رمز التحديث: 20230303
DOI: 10.1038/s41563-022-01428-6
PMID: 36550373
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4660
DOI:10.1038/s41563-022-01428-6