دورية أكاديمية

Engineering Resistance against Sclerotinia sclerotiorum Using a Truncated NLR (TNx) and a Defense-Priming Gene.

التفاصيل البيبلوغرافية
العنوان: Engineering Resistance against Sclerotinia sclerotiorum Using a Truncated NLR (TNx) and a Defense-Priming Gene.
المؤلفون: Guimaraes PM; Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil.; National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil., Quintana AC; Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil., Mota APZ; INRAE, Institut Sophia Agrobiotech, CNRS, Université Côte d'Azur, 06903 Sophia Antipolis, France., Berbert PS; Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil., Ferreira DDS; Department of Phytopathology, University of Brasilia (UnB), Brasilia 70910-900, Brazil., de Aguiar MN; Department of Phytopathology, University of Brasilia (UnB), Brasilia 70910-900, Brazil., Pereira BM; Department of Phytopathology, University of Brasilia (UnB), Brasilia 70910-900, Brazil., de Araújo ACG; Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil., Brasileiro ACM; Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil.; National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil.
المصدر: Plants (Basel, Switzerland) [Plants (Basel)] 2022 Dec 13; Vol. 11 (24). Date of Electronic Publication: 2022 Dec 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: MDPI AG Country of Publication: Switzerland NLM ID: 101596181 Publication Model: Electronic Cited Medium: Print ISSN: 2223-7747 (Print) Linking ISSN: 22237747 NLM ISO Abbreviation: Plants (Basel) Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI AG, [2012]-
مستخلص: The association of both cell-surface PRRs (Pattern Recognition Receptors) and intracellular receptor NLRs (Nucleotide-Binding Leucine-Rich Repeat) in engineered plants have the potential to activate strong defenses against a broad range of pathogens. Here, we describe the identification, characterization, and in planta functional analysis of a novel truncated NLR (TNx) gene from the wild species Arachis stenosperma ( AsTIR19 ), with a protein structure lacking the C-terminal LRR (Leucine Rich Repeat) domain involved in pathogen perception. Overexpression of AsTIR19 in tobacco plants led to a significant reduction in infection caused by Sclerotinia sclerotiorum , with a further reduction in pyramid lines containing an expansin-like B gene ( AdEXLB8 ) potentially involved in defense priming. Transcription analysis of tobacco transgenic lines revealed induction of hormone defense pathways (SA; JA-ET) and PRs (Pathogenesis-Related proteins) production. The strong upregulation of the respiratory burst oxidase homolog D (RbohD) gene in the pyramid lines suggests its central role in mediating immune responses in plants co-expressing the two transgenes, with reactive oxygen species (ROS) production enhanced by AdEXLB8 cues leading to stronger defense response. Here, we demonstrate that the association of potential priming elicitors and truncated NLRs can produce a synergistic effect on fungal resistance, constituting a promising strategy for improved, non-specific resistance to plant pathogens.
References: Transgenic Res. 2012 Feb;21(1):89-99. (PMID: 21479829)
Funct Plant Biol. 2013 Dec;40(12):1298-1309. (PMID: 32481196)
Front Plant Sci. 2017 Feb 06;8:127. (PMID: 28220140)
Plant Divers. 2016 Jun 16;38(2):118-123. (PMID: 30159455)
Nat Commun. 2022 Mar 21;13(1):1524. (PMID: 35314704)
Plant J. 2002 Oct;32(1):77-92. (PMID: 12366802)
J Comput Biol. 2005 Oct;12(8):1047-64. (PMID: 16241897)
Mol Cell Probes. 2019 Aug;46:101418. (PMID: 31283967)
J Proteomics. 2020 Apr 15;217:103690. (PMID: 32068185)
Plant J. 2018 Feb;93(4):592-613. (PMID: 29266555)
Trends Microbiol. 2005 Aug;13(8):381-8. (PMID: 15994078)
Science. 2013 Aug 16;341(6147):746-51. (PMID: 23950531)
PLoS One. 2013 Oct 25;8(10):e76619. (PMID: 24204646)
New Phytol. 2013 Jan;197(2):595-605. (PMID: 23206118)
Front Genet. 2019 Apr 26;10:384. (PMID: 31105749)
PLoS Biol. 2020 Sep 14;18(9):e3000783. (PMID: 32925907)
Nature. 2021 Apr;592(7852):110-115. (PMID: 33692545)
J Exp Bot. 2018 May 25;69(12):3141-3155. (PMID: 29648614)
Plant Cell. 2018 Feb;30(2):285-299. (PMID: 29382771)
Plant J. 2020 Jul;103(2):903-917. (PMID: 32170798)
BMC Plant Biol. 2018 Aug 6;18(1):159. (PMID: 30081841)
Sci Rep. 2021 May 27;11(1):11097. (PMID: 34045561)
Plant J. 2018 May 23;:. (PMID: 29797366)
Front Plant Sci. 2017 Nov 16;8:1963. (PMID: 29201034)
Plant Biotechnol J. 2013 Jan;11(1):33-42. (PMID: 23031077)
Transgenic Res. 2021 Apr;30(2):143-154. (PMID: 33527156)
BMC Plant Biol. 2014 Dec 31;14:387. (PMID: 25551287)
Science. 1985 Mar 8;227(4691):1229-31. (PMID: 17757866)
Phytopathology. 2018 Oct;108(10):1128-1140. (PMID: 30048598)
Biochem Genet. 2020 Dec;58(6):824-847. (PMID: 32506157)
Nat Commun. 2022 Apr 25;13(1):2213. (PMID: 35468894)
PLoS One. 2016 Apr 13;11(4):e0153494. (PMID: 27073898)
Mol Plant Pathol. 2018 Nov;19(11):2516-2523. (PMID: 30011120)
PLoS One. 2018 May 30;13(5):e0198191. (PMID: 29847587)
PLoS One. 2015 Oct 21;10(10):e0140937. (PMID: 26488731)
Trends Plant Sci. 2014 Oct;19(10):623-30. (PMID: 25088679)
Curr Opin Plant Biol. 2021 Aug;62:102030. (PMID: 33684883)
Plant Physiol. 2012 May;159(1):251-65. (PMID: 22388490)
New Phytol. 2019 Mar;221(4):2054-2066. (PMID: 30317650)
BMC Biol. 2016 Feb 19;14:8. (PMID: 26891798)
Sci Rep. 2020 Sep 17;10(1):15258. (PMID: 32943670)
Annu Rev Phytopathol. 2018 Aug 25;56:243-267. (PMID: 29949721)
Plant J. 2021 Sep;107(6):1681-1696. (PMID: 34231270)
Annu Rev Phytopathol. 2005;43:205-27. (PMID: 16078883)
Annu Rev Plant Biol. 2020 Apr 29;71:355-378. (PMID: 32092278)
Front Plant Sci. 2017 May 19;8:838. (PMID: 28580004)
Bot Stud. 2017 Dec;58(1):6. (PMID: 28510189)
Front Plant Sci. 2018 Nov 19;9:1633. (PMID: 30510557)
Int J Mol Sci. 2019 Feb 04;20(3):. (PMID: 30720746)
Nat Plants. 2017 May 26;3:17072. (PMID: 28548656)
New Phytol. 2019 Apr;222(2):938-953. (PMID: 30585636)
Int J Mol Sci. 2021 Apr 29;22(9):. (PMID: 33946790)
Front Plant Sci. 2014 Jan 31;5:13. (PMID: 24550923)
Protoplasma. 2017 Mar;254(2):957-969. (PMID: 27468994)
Sci STKE. 2007 Aug 28;2007(401):re6. (PMID: 17726178)
FEMS Microbiol Lett. 2013 Jul;344(1):77-85. (PMID: 23581479)
Cells. 2020 Nov 30;9(12):. (PMID: 33266087)
Plant Mol Biol. 1998 Mar;36(5):681-90. (PMID: 9526500)
Trends Plant Sci. 2019 Jan;24(1):9-12. (PMID: 30446304)
New Phytol. 2019 Apr;222(1):70-83. (PMID: 30575972)
Front Plant Sci. 2014 Nov 25;5:606. (PMID: 25506347)
Science. 2018 Jun 22;360(6395):1300-1301. (PMID: 29930125)
Nat Genet. 2016 Apr;48(4):438-46. (PMID: 26901068)
Nat Plants. 2021 Apr;7(4):382-383. (PMID: 33785867)
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14861-6. (PMID: 17804803)
Plant Sci. 2015 Apr;233:53-60. (PMID: 25711813)
Plant J. 2017 Dec;92(5):808-821. (PMID: 28901644)
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16463-8. (PMID: 21911370)
Mol Plant Pathol. 2018 May;19(5):1267-1281. (PMID: 28834153)
Int J Mol Sci. 2021 Jul 18;22(14):. (PMID: 34299290)
Transgenic Res. 2017 Oct;26(5):613-624. (PMID: 28712067)
Curr Opin Plant Biol. 2017 Aug;38:59-67. (PMID: 28494248)
Trends Plant Sci. 2020 Jul;25(7):695-713. (PMID: 32526174)
Curr Opin Plant Biol. 2012 Aug;15(4):375-84. (PMID: 22658703)
Plants (Basel). 2022 Feb 02;11(3):. (PMID: 35161389)
Commun Integr Biol. 2008;1(1):59-61. (PMID: 19513199)
BMC Genomics. 2012 Aug 13;13:387. (PMID: 22888963)
Plant J. 2008 Jul;55(2):188-200. (PMID: 18397376)
Science. 2020 Dec 4;370(6521):. (PMID: 33273074)
Plant Mol Biol. 2017 May;94(1-2):79-96. (PMID: 28243841)
J Integr Plant Biol. 2018 Aug;60(8):703-722. (PMID: 29704401)
Nature. 2006 Nov 16;444(7117):323-9. (PMID: 17108957)
Plant Biotechnol J. 2017 Jun;15(6):674-687. (PMID: 27862842)
J Exp Bot. 2019 Oct 15;70(19):5407-5421. (PMID: 31173088)
Front Plant Sci. 2019 Oct 18;10:1314. (PMID: 31681392)
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8575-6. (PMID: 16735473)
Front Plant Sci. 2018 Feb 06;9:119. (PMID: 29467784)
Plant Signal Behav. 2021 Jan 2;16(1):1839226. (PMID: 33124509)
Cytogenet Genome Res. 2021;161(5):257-271. (PMID: 34320507)
J Exp Bot. 2008;59(6):1383-97. (PMID: 18390848)
Mol Plant Microbe Interact. 2006 Apr;19(4):383-8. (PMID: 16610741)
Plant Physiol. 2019 Apr;179(4):1227-1235. (PMID: 30530739)
Front Immunol. 2013 Oct 21;4:348. (PMID: 24155748)
Annu Rev Phytopathol. 2017 Aug 4;55:257-286. (PMID: 28617654)
Brief Bioinform. 2013 Mar;14(2):178-92. (PMID: 22517427)
Plant J. 2020 Jun;102(5):887-896. (PMID: 31943489)
Plant J. 2002 Jan;29(1):23-32. (PMID: 12060224)
Mol Plant Microbe Interact. 2010 Jul;23(7):846-60. (PMID: 20521948)
Phytopathology. 2018 Jul;108(7):792-802. (PMID: 29648947)
BMC Res Notes. 2011 Sep 09;4:339. (PMID: 21906295)
Int J Mol Sci. 2018 Jun 04;19(6):. (PMID: 29867062)
Curr Opin Plant Biol. 2006 Aug;9(4):383-90. (PMID: 16713729)
PLoS Genet. 2015 Jan 24;11(1):e1004945. (PMID: 25617755)
معلومات مُعتمدة: project number 465480/2014-4 National Council for Scientific and Technological Development; project number 0193-001663/2017 Foundation for Research Support of the Federal District; 20.18.03.022.00.00 Brazilian Agricultural Research Corporation
فهرسة مساهمة: Keywords: TIR-NLR; expansins; gene pyramid; immunity; white mold; wild Arachis
تواريخ الأحداث: Date Created: 20221223 Latest Revision: 20221227
رمز التحديث: 20221227
مُعرف محوري في PubMed: PMC9786959
DOI: 10.3390/plants11243483
PMID: 36559595
قاعدة البيانات: MEDLINE
الوصف
تدمد:2223-7747
DOI:10.3390/plants11243483