دورية أكاديمية

Guidelines for DC preparation and flow cytometric analysis of human lymphohematopoietic tissues.

التفاصيل البيبلوغرافية
العنوان: Guidelines for DC preparation and flow cytometric analysis of human lymphohematopoietic tissues.
المؤلفون: Heger L; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany., Dudziak D; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany.; Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany.; Deutsches Zentrum Immuntherapie (DZI), D-91054, Erlangen, Germany., Amon L; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany., Hatscher L; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany., Kaszubowski T; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany., Lehmann CHK; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany.; Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany.
المصدر: European journal of immunology [Eur J Immunol] 2023 Dec; Vol. 53 (12), pp. e2249917. Date of Electronic Publication: 2022 Dec 23.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 1273201 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4141 (Electronic) Linking ISSN: 00142980 NLM ISO Abbreviation: Eur J Immunol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Weinheim : Wiley-VCH
Original Publication: Weinheim, Verlag Chemie GmbH.
مواضيع طبية MeSH: Thymus Gland* , Spleen*, Humans ; Flow Cytometry/methods ; Cell Separation/methods ; Dendritic Cells
مستخلص: This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single cell suspensions from human lymphohematopoietic tissues including blood, spleen, thymus, and tonsils with a focus on the subsequent analysis of DC via flow cytometry, as well as flow cytometric cell sorting of primary human DC. Further, prepared single cell suspensions as well as cell sorter-purified DC can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, and many more. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
(© 2022 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.)
References: Amon, L., Hatscher, L., Heger, L., Dudziak, D., Lehmann, C.H.K., Harnessing the complete repertoire of conventional dendritic cell functions for cancer immunotherapy, Pharmaceutics. 2020. 12: 1-83.
Heidkamp, G.F., Lehmann, C.H.K., Heger, L., Baransk, A., Hoffmann, A., Lühr, J., Dudziak, D., Functional Specialization of Dendritic Cell Subsets, in: Encycl. Cell Biol., Elsevier, 2016: pp. 588-604. https://doi.org/10.1016/B978-0-12-394447-4.30076-1.
Chow, K. V., Sutherland, R.M., Zhan, Y., Lew, A.M., Heterogeneity, functional specialization and differentiation of monocyte-derived dendritic cells, Immunol. Cell Biol. 2017. 95: 244-251.
Lutz, M.B., Strobl, H., Schuler, G., Romani, N., GM-CSF monocyte-derived cells and langerhans cells as part of the dendritic cell family, Front. Immunol. 2017. 8: 1-11.
Schlitzer, A., McGovern, N., Ginhoux, F., Dendritic cells and monocyte-derived cells: Two complementary and integrated functional systems, Semin. Cell Dev. Biol. 2015. 41: 9-22.
Sander, J., Schmidt, S. V., Cirovic, B., McGovern, N., Papantonopoulou, O., Hardt, A.L., Aschenbrenner, A.C., et al. Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2, Immunity. 2017. 47: 1051-1066.e12.
Segura, E., Touzot, M., Bohineust, A., Cappuccio, A., Chiocchia, G., Hosmalin, A., Dalod, M., et al. Human Inflammatory Dendritic Cells Induce Th17 Cell Differentiation, Immunity. 2013. 38: 336-348.
Helft, J., Böttcher, J., Chakravarty, P., Zelenay, S., Huotari, J., Schraml, B.U., Goubau, D., et al. GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c+MHCII+ Macrophages and Dendritic Cells, Immunity. 2015. 42: 1197-1211.
Amon, L., Lehmann, C.H.K., Heger, L., Heidkamp, G.F., Dudziak, D., The ontogenetic path of human dendritic cells, Mol. Immunol. 2020. 120: 122-129.
Heger, L., Balk, S., Lühr, J.J., Heidkamp, G.F., Lehmann, C.H.K., Hatscher, L., Purbojo, A., et al. CLEC10A Is a Specific Marker for Human CD1c+ Dendritic Cells and Enhances Their Toll-Like Receptor 7/8-Induced Cytokine Secretion, Front. Immunol. 2018. 9: 1-16.
Hatscher, L., Lehmann, C.H.K., Purbojo, A., Onderka, C., Liang, C., Hartmann, A., Cesnjevar, R., et al. Select hyperactivating NLRP3 ligands enhance the T H 1- and T H 17-inducing potential of human type 2 conventional dendritic cells, Sci. Signal. 2021. 14: eabe1757.
Heidkamp, G.F., Sander, J., Lehmann, C.H.K., Heger, L., Eissing, N., Baranska, A., Lu hr, J.J., et al. Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment, Sci. Immunol. 2016. 1: eaai7677-eaai7677.
Dzionek, A., Fuchs, A., Schmidt, P., Cremer, S., Zysk, M., Miltenyi, S., Buck, D.W., et al. BDCA-2, BDCA-3, and BDCA-4: Three Markers for Distinct Subsets of Dendritic Cells in Human Peripheral Blood, J. Immunol. 2000. 165: 6037-6046.
MacDonald, K.P.A., Munster, D.J., Clark, G.J., Dzionek, A., Schmitz, J., Hart, D.N.J., Characterization of human blood dendritic cell subsets, Blood. 2002. 100: 4512-4520.
Bigley, V., McGovern, N., Milne, P., Dickinson, R., Pagan, S., Cookson, S., Haniffa, M., et al. Langerin-expressing dendritic cells in human tissues are related to CD1c + dendritic cells and distinct from Langerhans cells and CD141 high XCR1 + dendritic cells, J. Leukoc. Biol. 2015. 97: 627-634.
Haniffa, M., Shin, A., Bigley, V., McGovern, N., Teo, P., See, P., Wasan, P.S., et al. Human Tissues Contain CD141(hi) Cross-Presenting Dendritic Cells with Functional Homology to Mouse CD103(+) Nonlymphoid Dendritic Cells, Immunity. 2012. https://doi.org/10.1016/j.immuni.2012.04.012.
Watchmaker, P.B., Lahl, K., Lee, M., Baumjohann, D., Morton, J., Kim, S.J., Zeng, R., et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice, Nat. Immunol. 2013. 15: 98-108.
Mittag, D., Proietto, A.I., Loudovaris, T., Mannering, S.I., Vremec, D., Shortman, K., Wu, L., et al. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status., J. Immunol. 2011. 186: 6207-6217.
Bamboat, Z.M., Stableford, J. a, Plitas, G., Burt, B.M., Nguyen, H.M., Welles, A.P., Gonen, M. et al., Human liver dendritic cells promote T cell hyporesponsiveness., J. Immunol. 2009. 182: 1901-1911.
Nestle, F.O., Filgueira, L., Nickoloff, B.J., Burg, G., Human dermal dendritic cells process and present soluble protein antigens, J. Invest. Dermatol.. 110: 762-766. https://doi.org/10.1046/j.1523-1747.1998.00189.x.
Nestle, F.O., Zheng, X.G., Thompson, C.B., Turka, L.A., Nickoloff, B.J., Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets., J. Immunol. 1993. 151: 6535-6545. http://www.ncbi.nlm.nih.gov/pubmed/7504023.
Klechevsky, E., Morita, R., Liu, M., Cao, Y., Functional Specializations of Human Epidermal Langerhans Cells and CD14+ Dermal Dendritic Cells, Immunity. 2008. 29: 497-510. https://doi.org/10.1016/j.immuni.2008.07.013.Functional.
Artyomov, M.N., Munk, A., Gorvel, L., Korenfeld, D., Cella, M., Tung, T., Klechevsky, E., Modular expression analysis reveals functional conservation between human langerhans cells and mouse cross-priming dendritic cells, J. Exp. Med. 2015. 212: 743-757.
Korenfeld, D., Gorvel, L., Munk, A., Man, J., Schaffer, A., Tung, T., Mann, C. et al., A type of human skin dendritic cell marked by CD5 is associated with the development of inflammatory skin disease, JCI Insight. 2017. 2. https://doi.org/10.1172/JCI.INSIGHT.96101.
Brown, C.C., Gudjonson, H., Pritykin, Y., Deep, D., Lavallée, V.P., Mendoza, A., Fromme, R. et al., Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity, Cell. 2019. 179: 846-863.e24.
Nascimbeni, M., Perié, L., Chorro, L., Diocou, S., Kreitmann, L., Louis, S., Garderet, L. et al., Plasmacytoid dendritic cells accumulate in spleens from chronically HIV-infected patients but barely participate in interferon-α expression, Blood. 2009. 113: 6112-6119.
Mcllroy, D., Troadec, C., Grassi, F., Samri, A., Barrou, B., Autran, B., Debré, P. et al., Investigation of human spleen dendritic cell phenotype and distribution reveals evidence of in vivo activation in a subset of organ donors, Blood. 2001. 97: 3470-3477.
Stoitzner, P., Romani, N., McLellan, A.D., Tripp, C.H., Ebner, S., Isolation of Skin Dendritic Cells from Mouse and Man, in: 2010: pp. 235-248. https://doi.org/10.1007/978-1-60761-421-0&#95;16.
Richters, C.D., Hoekstra, M.J., Pont, J.S. du, Kreis, R.W., Kamperdijk, E.W.A., Isolation of Human Skin Dendritic Cells by In Vitro Migration, in: Dendritic Cell Protoc., Humana Press, New Jersey, 2001: pp. 145-153. https://doi.org/10.1385/1-59259-150-7:145.
Botting, R.A., Bertram, K.M., Baharlou, H., Sandgren, K.J., Fletcher, J., Rhodes, J.W., Rana, H. et al., Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes, J. Leukoc. Biol. 2017. 101: 1393-1403.
Bourdely, P., Anselmi, G., Vaivode, K., Ramos, R.N., Missolo-Koussou, Y., Hidalgo, S., Tosselo, J. et al., Transcriptional and Functional Analysis of CD1c+ Human Dendritic Cells Identifies a CD163+ Subset Priming CD8+CD103+ T Cells, Immunity. 2020. 0: 1-18.
Heger, L., Lühr, J.J., Amon, L., Smith, A.-S., Eissing, N., Dudziak, D., Six-Color Confocal Immunofluorescence Microscopy with 4-Laser Lines, in: Zamir, E. (Ed.), Mult. Imaging. Methods Mol. Biol., Humana, New York, NY, 2021: pp. 21-30. https://doi.org/10.1007/978-1-0716-1593-5&#95;2.
Eissing, N., Heger, L., Baranska, A., Cesnjevar, R., Büttner-Herold, M., Söder, S., Hartmann, A. et al., Easy performance of 6-color confocal immunofluorescence with 4-laser line microscopes, Immunol. Lett. 2014. 161: 1-5.
Yamazaki, S., Dudziak, D., Heidkamp, G.F., Fiorese, C., Bonito, A.J., Inaba, K., Nussenzweig, M.C. et al., CD8+CD205+ Splenic Dendritic Cells Are Specialized to Induce Foxp3+ Regulatory T Cells, J. Immunol. 2008. 181: 6923-6933.
Iberg, C.A., Jones, A., Hawiger, D., Dendritic Cells As Inducers of Peripheral Tolerance, Trends Immunol. 2017. 38: 793-804.
Hu, Z., Lancaster, J.N., Sasiponganan, C., Ehrlich, L.I.R., CCR4 promotes medullary entry and thymocyte-dendritic cell interactions required for central tolerance, J. Exp. Med. 2015. 212: 1947-1965.
Oh, J., Wu, N., Barczak, A.J., Barbeau, R., Erle, D.J., Shin, J.-S., CD40 Mediates Maturation of Thymic Dendritic Cells Driven by Self-Reactive CD4 + Thymocytes and Supports Development of Natural Regulatory T Cells, J. Immunol. 2018. 200: 1399-1412.
Bonasio, R., Scimone, M.L., Schaerli, P., Grabie, N., Lichtman, A.H., von Andrian, U.H., Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus, Nat. Immunol. 2006. 7: 1092-1100.
Martín-Gayo, E., Sierra-Filardi, E., Corbí, A.L., Toribio, M.L., Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development., Blood. 2010. 115: 5366-5375.
Martín-Gayo, E., González-García, S., García-León, M.J., Murcia-Ceballos, A., Alcain, J., García-Peydró, M., Allende, L. et al., Spatially restricted JAG1-Notch signaling in human thymus provides suitable DC developmental niches., J. Exp. Med. 2017. jem.20161564. https://doi.org/10.1084/jem.20161564.
Martinez, V.G., Canseco, N.M., Hidalgo, L., Valencia, J., Entrena, A., Fernandez-Sevilla, L.M., Hernandez-Lopez, C. et al., A discrete population of IFN lambda-expressing BDCA3hi dendritic cells is present in human thymus., Immunol. Cell Biol. 2015. 93: 673-678.
Hanabuchi, S., Ito, T., Park, W.-R., Watanabe, N., Shaw, J.L., Roman, E., Arima, K. et al., Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus., J. Immunol. 2010. 184: 2999-3007.
Alcántara-Hernández, M., Leylek, R., Wagar, L.E., Engleman, E.G., Keler, T., Marinkovich, M.P., Davis, M.M. et al., High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization, Immunity. 2017. 47: 1-14.
Segura, E., Durand, M., Amigorena, S., Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells, J. Exp. Med. 2013. 210: 1035-1047.
Durand, M., Walter, T., Pirnay, T., Naessens, T., Gueguen, P., Goudot, C., Lameiras, S. et al., Human lymphoid organ cDC2 and macrophages play complementary roles in T follicular helper responses, J. Exp. Med. 2019. 216: 1561-1581.
Amon, L., Lehmann, C.H.K., Baranska, A., Schoen, J., Heger, L., Dudziak, D., Transcriptional control of dendritic cell development and functions, in: Int. Rev. Cell Mol. Biol., 2019: pp. 55-151. https://doi.org/10.1016/bs.ircmb.2019.10.001.
Villani, A.-C., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher, J., Griesbeck, M. et al., Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors, Science (80-.). 2017. 356: eaah4573.
See, P., Dutertre, C.-A., Chen, J., Günther, P., McGovern, N., Irac, S.E., Gunawan, M. et al., Mapping the human DC lineage through the integration of high-dimensional techniques, Science (80-.). 2017. 3009. https://doi.org/10.1126/science.eaag3009.
Dutertre, C.A., Becht, E., Irac, S.E., Khalilnezhad, A., Narang, V., Khalilnezhad, S., Ng, P.Y. et al., Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells, Immunity. 2019. 51: 573-589.e8.
Yin, X., Yu, H., Jin, X., Li, J., Guo, H., Shi, Q., Yin, Z. et al., Human Blood CD1c + Dendritic Cells Encompass CD5 high and CD5 low Subsets That Differ Significantly in Phenotype, Gene Expression, and Functions, J. Immunol. 2017. 198: 1553-1564.
Cytlak, U., Resteu, A., Pagan, S., Green, K., Milne, P., Maisuria, S., McDonald, D. et al., Differential IRF8 Transcription Factor Requirement Defines Two Pathways of Dendritic Cell Development in Humans, Immunity. 2020. 53: 353-370.e8.
Santegoets, S.J., Duurland, C.L., Jordanova, E.J., van Ham, V.J., Ehsan, I., Loof, N.M., Narang, V. et al., CD163+ cytokine-producing cDC2 stimulate intratumoral type 1 T cell responses in HPV16-induced oropharyngeal cancer, J. Immunother. Cancer. 2020. 8: 1-15.
Heger, L., Hofer, T.P., Bigley, V., de Vries, I.J.M., Dalod, M., Dudziak, D., Ziegler-Heitbrock, L., Subsets of CD1c+ DCs: Dendritic Cell Versus Monocyte Lineage, Front. Immunol. 2020. 11: 1-11.
Banchereau, J., Steinman, R.M., Dendritic cells and the control of immunity., Nature. 1998. 392: 245-252.
Hildner, K., Edelson, B.T., Purtha, W.E., Diamond, M.S., Matsushita, H., Kohyama, M., Calderon, B. et al., Batf3 Deficiency Reveals a Critical Role for CD8 + Dendritic Cells in Cytotoxic T Cell Immunity, Science (80-.). 2008. 322: 1097-1100.
Dudziak, D., Kamphorst, A.O., Heidkamp, G.F., Buchholz, V.R., Trumpfheller, C., Yamazaki, S., Cheong, C. et al., Differential Antigen Processing by Dendritic Cell Subsets in Vivo, Science (80-.). 2007. 315: 107-111.
den Haan, J.M.M., Lehar, S.M., Bevan, M.J., Cd8+ but Not Cd8− Dendritic Cells Cross-Prime Cytotoxic T Cells in Vivo, J. Exp. Med. 2000. 192: 1685-1696.
Schlitzer, A., McGovern, N., Teo, P., Zelante, T., Atarashi, K., Low, D., Ho, A.W.S. et al., IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses, Immunity. 2013. 38: 970-983.
معلومات مُعتمدة: CRC1181-TPA7 261193037 German Research Foundation; DU548/5-1 German Research Foundation; TRR305-TPB5 German Research Foundation; RTG2504-401821119 German Research Foundation; RTG2599 421758891 German Research Foundation; IZKF-A80 Interdisziplinäres Zentrum für klinische Forschung; IZKF-A87 Interdisziplinäres Zentrum für klinische Forschung; Bayresq.Net-IRIS Bavarian State Ministry of Science and Art; DU548/6-1 Agence Nationale de la Recherche
فهرسة مساهمة: Keywords: DC subpopulations; Dendritic cells; flow cytometry; human; lymphoid tissues; organ preparation
تواريخ الأحداث: Date Created: 20221223 Date Completed: 20231220 Latest Revision: 20231220
رمز التحديث: 20231220
DOI: 10.1002/eji.202249917
PMID: 36563130
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4141
DOI:10.1002/eji.202249917