دورية أكاديمية

Interstitial flow promotes the formation of functional microvascular networks in vitro through upregulation of matrix metalloproteinase-2.

التفاصيل البيبلوغرافية
العنوان: Interstitial flow promotes the formation of functional microvascular networks in vitro through upregulation of matrix metalloproteinase-2.
المؤلفون: Zhang S; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA., Wan Z; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA., Pavlou G; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA., Zhong AX; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA., Xu L; Ragon institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA., Kamm RD; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
المصدر: Advanced functional materials [Adv Funct Mater] 2022 Oct 21; Vol. 32 (43). Date of Electronic Publication: 2022 Aug 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101190390 Publication Model: Print-Electronic Cited Medium: Print ISSN: 1616-301X (Print) Linking ISSN: 1616301X NLM ISO Abbreviation: Adv Funct Mater Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH, c2001-
مستخلص: Self-organized microvascular networks (MVNs) have become key to the development of many microphysiological models. However, the self-organizing nature of this process combined with variations between types or batches of endothelial cells (ECs) often lead to inconsistency or failure to form functional MVNs. Since interstitial flow (IF) has been reported to play a beneficial role in angiogenesis, vasculogenesis, and 3D capillary morphogenesis, we systematically investigated the role IF plays during neovessel formation in a customized single channel microfluidic chip for which IF has been fully characterized. Compared to static conditions, MVNs formed under IF have higher vessel density and diameters and greater network perfusability. Through a series of inhibitory experiments, we demonstrated that IF treatment improves vasculogenesis by ECs through upregulation of matrix metalloproteinase-2 (MMP-2). We then successfully implemented a novel strategy involving the interplay between IF and MMP-2 inhibitor to regulate morphological parameters of the self-organized MVNs, with vascular permeability and perfusability well maintained. The revealed mechanism and proposed methodology were further validated with a brain MVN model. Our findings and methods have the potential to be widely utilized to boost the development of various organotypic MVNs and could be incorporated into related bioengineering applications where perfusable vasculature is desired.
References: Nat Protoc. 2022 Jan;17(1):95-128. (PMID: 34997242)
Sci Adv. 2019 Mar 20;5(3):eaau7518. (PMID: 30906859)
Biomaterials. 2022 Jan;280:121248. (PMID: 34794827)
Annu Rev Biomed Eng. 2007;9:229-56. (PMID: 17459001)
Cell Stem Cell. 2020 Nov 5;27(5):798-812.e6. (PMID: 32931729)
Tissue Eng Part C Methods. 2014 Jul;20(7):543-52. (PMID: 24151838)
Biomaterials. 2019 Aug;212:115-125. (PMID: 31112823)
Lab Chip. 2021 Feb 9;21(3):473-488. (PMID: 33480945)
Angiogenesis. 2019 May;22(2):223-236. (PMID: 30370470)
Small Methods. 2022 Jun;6(6):e2200143. (PMID: 35373502)
J Cell Physiol. 1987 Sep;132(3):509-16. (PMID: 2443514)
Tissue Eng Part C Methods. 2013 Sep;19(9):730-7. (PMID: 23320912)
Integr Biol (Camb). 2017 Jun 19;9(6):506-518. (PMID: 28561127)
Integr Biol (Camb). 2012 Aug;4(8):863-74. (PMID: 22673733)
Nat Biomed Eng. 2021 Aug;5(8):830-846. (PMID: 34127820)
Front Physiol. 2020 Jun 18;11:684. (PMID: 32625119)
Biomaterials. 2020 Jun;243:119921. (PMID: 32172030)
Angiogenesis. 2022 Nov;25(4):455-470. (PMID: 35704148)
Biomaterials. 2016 Dec;110:45-59. (PMID: 27710832)
FASEB J. 2009 Jul;23(7):2155-64. (PMID: 19246488)
APL Bioeng. 2022 Jul 06;6(3):030401. (PMID: 35813884)
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):7968-73. (PMID: 24843171)
Cell. 1998 Oct 30;95(3):365-77. (PMID: 9814707)
Biomaterials. 2021 Sep;276:121032. (PMID: 34303155)
Lab Chip. 2012 Aug 21;12(16):2815-22. (PMID: 22767334)
Lab Chip. 2016 Oct 18;16(21):4189-4199. (PMID: 27722679)
Biomaterials. 2018 Oct;180:117-129. (PMID: 30032046)
Biofabrication. 2019 Oct 21;12(1):015004. (PMID: 31470437)
Can J Physiol Pharmacol. 2005 Jan;83(1):1-7. (PMID: 15759044)
APL Bioeng. 2019 Jul 30;3(3):036102. (PMID: 31431938)
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15779-84. (PMID: 16249343)
Lab Chip. 2021 Dec 21;22(1):170-192. (PMID: 34881385)
Tissue Eng Part A. 2009 Jan;15(1):175-85. (PMID: 18636940)
Arterioscler Thromb Vasc Biol. 2001 Jul;21(7):1104-17. (PMID: 11451738)
Lab Chip. 2013 Apr 21;13(8):1489-500. (PMID: 23440068)
Adv Mater. 2020 Nov;32(46):e2002974. (PMID: 33000879)
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust; R01 NS121078 United States NS NINDS NIH HHS; U01 CA214381 United States CA NCI NIH HHS; U54 CA261694 United States CA NCI NIH HHS
فهرسة مساهمة: Keywords: blood-brain barrier; interstitial flow; matrix metalloproteinase-2; microphysiological system; microvascular networks; vasculogenesis
تواريخ الأحداث: Date Created: 20221226 Latest Revision: 20231022
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9783342
DOI: 10.1002/adfm.202206767
PMID: 36569597
قاعدة البيانات: MEDLINE
الوصف
تدمد:1616-301X
DOI:10.1002/adfm.202206767