دورية أكاديمية

Levels and determinants of urinary and blood metals in the geothermal area of Mt. Amiata in Tuscany (Italy).

التفاصيل البيبلوغرافية
العنوان: Levels and determinants of urinary and blood metals in the geothermal area of Mt. Amiata in Tuscany (Italy).
المؤلفون: Nuvolone D; Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi, 1, 50141, Florence, FI, Italy. daniela.nuvolone@ars.toscana.it., Aprea MC; Public Health Laboratory, Department of Prevention, Health Agency of South-East Tuscany, Strada del Ruffolo 4, 53100, Siena, SI, Italy., Stoppa G; Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi, 1, 50141, Florence, FI, Italy.; Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padova, Via Loredan 18, 35131, Padova, PD, Italy., Petri D; Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi, 1, 50141, Florence, FI, Italy.; Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, PI, Italy., Barbone F; Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Strada Di Fiume, 447, Trieste, Italy., Crocetti E; Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi, 1, 50141, Florence, FI, Italy., Voller F; Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi, 1, 50141, Florence, FI, Italy.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Mar; Vol. 30 (13), pp. 38319-38332. Date of Electronic Publication: 2022 Dec 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Metals, Heavy*/urine , Mercury*/analysis , Arsenic*/analysis, Animals ; Female ; Humans ; Cadmium/analysis ; Chromium/analysis ; Manganese/analysis ; Nickel/analysis ; Thallium/analysis ; Cobalt ; Environmental Monitoring
مستخلص: Natural sources and anthropogenic activities are responsible for the widespread presence of heavy metals in the environment in the volcanic and geothermal area of Mt. Amiata (Tuscany, Italy). This study evaluates the extent of the population exposure to metals and describes the major individual and environmental determinants. A human biomonitoring survey was carried out to determine the concentrations of arsenic (As), mercury (Hg), thallium (Tl), antimony (Sb), cadmium (Cd), nickel (Ni), chromium (Cr), cobalt (Co), vanadium (V), and manganese (Mn). The associations between socio-demographics, lifestyle, diet, environmental exposure, and metal concentrations were evaluated using multiple log-linear regression models, adjusted for urinary creatinine. A total of 2034 urine and blood samples were collected. Adjusted geometric averages were higher in women (except for blood Hg) and younger subjects (except for Tl and Cd). Smoking was associated with Cd, As, and V. Some dietary habits (rice, fish, and wine consumption) were associated with As, Hg, Co, and Ni. Amalgam dental fillings and contact lenses were associated with Hg levels, piercing with As, Co, and Ni. Among environmental determinants, urinary As levels were higher in subjects using the aqueduct water for drinking/cooking. The consumption of locally grown fruits and vegetables was associated with Hg, Tl, and Co. Exposure to geothermal plant emissions was associated only with Tl.
(© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Agency for Toxic Substances and Disease Registry ATSDR (2004) Toxicological profile for Cobalt. Atlanta, GA 2004: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/toxprofiles/tp33.pdf . Accessed 11 July 2022.
Agency for Toxic Substances and Disease Registry ATSDR (2005) Toxicological profile for Nickel. Atlanta, GA 2005: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/toxprofiles/tp15.pdf . Accessed 11 July 2022.
Agency for Toxic Substances and Disease Registry ATSDR (2012a) Toxicological profile for Vanadium. Atlanta, GA 2012a: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/toxprofiles/tp58.pdf . Accessed 11 July 2022.
Agency for Toxic Substances and Disease Registry ATSDR (2012b) Toxicological profile for Cadmium. Atlanta, GA 2012b: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf . Accessed 11 July 2022.
Agency for Toxic Substances and Disease Registry. Toxicological ATSDR (2022) Profile for Mercury. Atlanta, GA 2022: U.S. Department of Health and Human Services, Public Health Service. https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=115&tid=24 . Accessed 11 July 2022.
Airaksinen R, Turunen AW, Rantakokko P, Männistö S, Vartiainen T, Verkasalo PK (2011) Blood concentration of methylmercury in relation to food consumption. Public Health Nutr 14:480–489. https://doi.org/10.1017/S1368980010001485. (PMID: 10.1017/S1368980010001485)
Allshouse WB, Fitch MK, Hampton KH, Gesink DC, Doherty IA, Leone PA, Serre ML, Miller WC (2010) Geomasking sensitive health data and privacy protection: an evaluation using an E911 database. Geocarto Int 25(6):443–452. https://doi.org/10.1080/10106049.2010.496496. (PMID: 10.1080/10106049.2010.496496)
American Conference of Governmental Industrial Hygienists ACGIH (2017) TLVs and BEIs based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. ACGIH Cincinnati, OH.
Aprea MC, Apostoli P, Bettinelli M, Lovreglio P, Negri S, Perbellini L et al (2018) Urinary levels of metal elements in the non-smoking general population in Italy: SIVR study 2012–2015. Toxicol Lett 298:177–185. https://doi.org/10.1016/j.toxlet.2018.07.004. (PMID: 10.1016/j.toxlet.2018.07.004)
Aprea MC, Nuvolone D, Petri D, Voller F, Bertelloni S, Aragona I (2020) Human biomonitoring to assess exposure to thallium following the contamination of drinking water. PLoS One 15(10):e0241223. https://doi.org/10.1371/journal.pone.0241223. (PMID: 10.1371/journal.pone.0241223)
Bae HS, Kang IG, Lee SG, Eom SY, Kim YD, Oh SY et al (2017) Arsenic exposure and seafood intake in Korean adults. Hum Exp Toxicol 36:451–460. https://doi.org/10.1177/0960327116665673. (PMID: 10.1177/0960327116665673)
Barazzuoli P, Bosco G, Nante N, Rappuoli D, Salleolini M (1994) The aquifer of Mount Amiata: evaluation of the perennial yield and its quality. Mem Soc Geol It 48:825–832.
Barelli A, Ceccarelli A, Dini I, Fiordelisi A, Giorgi N, Lovari F et al. (2010) A review of the Mt. Amiata geothermal system (Italy). In: Proceedings World Geothermal Congress 2010:1–4.
Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2005) Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113:192–200. https://doi.org/10.1289/ehp.7337. (PMID: 10.1289/ehp.7337)
Batáriová A, Spevácková V, Benes B, Cejchanová M, Smíd J, Cerná M (2006) Blood and urine levels of Pb, Cd and Hg in the general population of the Czech Republic and proposed reference values. Int J Hyg Environ Health 209(4):359–366. https://doi.org/10.1016/j.ijheh.2006.02.005. (PMID: 10.1016/j.ijheh.2006.02.005)
Bavazzano P, Perico A, Rosendhal H, Apostoli P (1996) Determination of urinary arsenic by solvent extraction and electrothermal atomic absorption spectrometry. A comparison with directly coupled high performance liquid chromatography-inductively coupled plasma mass spectrometry. J Anal at Spectrom 11:521–524. https://doi.org/10.1039/JA9961100521. (PMID: 10.1039/JA9961100521)
Benedict SR, Behre JA (1936) Some application of a new color reaction for creatinine. J Biol Chem 114:515–532. (PMID: 10.1016/S0021-9258(18)74824-2)
Berglund M, Lindberg AL, Rahman M, Yunus M, Grandér M, Lönnerdal B, Vahter M (2011) Gender and age differences in mixed metal exposure and urinary excretion. Environ Res 111:1271–9. https://doi.org/10.1016/j.envres.2011.09.002. (PMID: 10.1016/j.envres.2011.09.002)
Bustaffa E, Minichilli F, Andreassi MG, Carone S, Coi A, Cori L et al (2014) Studies on markers of exposure and early effect in areas with arsenic pollution: methods and results of the project SEpiAs. Epidemiological surveillance in areas with environmental pollution by natural or anthropogenic arsenic. Epidemiol Prev 38:27–94 (Italian).
Bustaffa E, Minichilli F, Nuvolone D, Voller F, Cipriani F, Bianchi F (2017) Mortality of populations residing in geothermal areas of Tuscany during the period 2003–2012. Ann Ist Super Sanita 53:108–117.
Calamai A, Cataldi R, Squarci P, Taffi L (1970) Geology, geophysics ah hydrogeology of the Monte Amiata geothermal fields. Istituto internazionale per le richerche geotermiche, Pisa.
Calderon RL, Hudgens EE, Carty C, He B, Le XC, Rogers J, Thomas DJ (2013) Biological and behavioral factors modify biomarkers of arsenic exposure in a U.S. population. Environ Res 126:134–144. https://doi.org/10.1016/j.envres.2013.04.004. (PMID: 10.1016/j.envres.2013.04.004)
Cascio C, Raab A, Jenkins RO, Feldmann J, Meharg AA, Haris PI (2011) The impact of a rice based diet on urinary arsenic. J Environ Monit 13:257–265. https://doi.org/10.1039/c0em00482k. (PMID: 10.1039/c0em00482k)
Castaño A, Pedraza-Díaz S, Cañas AI, Pérez-Gómez B, Ramos JJ, Bartolomé M, Pärt P, Soto EP, Motas M, Navarro C, Calvo E, Esteban M (2019) Mercury levels in blood, urine and hair in a nation-wide sample of Spanish adults. Sci Total Environ 670:262–270. https://doi.org/10.1016/j.scitotenv.2019.03.174. (PMID: 10.1016/j.scitotenv.2019.03.174)
Centers for Disease Control and Prevention CDC (2022) Biomonitoring Data Tables for Environmental Chemicals. https://www.cdc.gov/exposurereport/data&#95;tables.html Accessed 14 Decembre 2022.
Cleland B, Tsuchiya A, Kalman DA, Dills R, Burbacher TM, White JW et al (2009) Arsenic exposure within the Korean community (United States) based on dietary behavior and arsenic levels in hair, urine, air, and water. Environ Health Perspect 117:632–638. https://doi.org/10.1289/ehp.11827. (PMID: 10.1289/ehp.11827)
deCastro BR, Caldwell KL, Jones RL, Blount BC, Pan Y, Ward C et al (2014) Dietary sources of methylated arsenic species in urine of the United States population, NHANES 2003–2010. PLoS One 9(9):e108098. https://doi.org/10.1371/journal.pone.0108098. (PMID: 10.1371/journal.pone.0108098)
Doveri M, Nisi B, Cerrina Feroni A, Ellero A, Menichini M, Lelli M et al (2012) Geological, hydrodynamic and geochemical features of the volcanic aquifer of Mt. Amiata (Tuscany, Central Italy): an overview. Acta Vulcanol 24:51–72.
Dressler VL, Santos CMM, Antes FG, Bentlin FRS, Pozebon D, Flores EMM (2012) Total mercury, inorganic mercury and methyl mercury determination in red wine. Food Anal Methods 5:505–511. (PMID: 10.1007/s12161-011-9273-6)
Environmental Protection Agency EPA (1984) Mercury health effects updates: Health issue assessment. Final report. Washington, DC 1984; Health and Environmental Assessment. Document no. EPA 600/8–84–019F. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=33398 Accessed 11 July 2022.
European Food Safety Authority EFSA (2012) Cadmium dietary exposure in the European population https://www.efsa.europa.eu/it/efsajournal/pub/2551 . Accessed 11 July 2022.
Frías S, Díaz C, Conde JE, Pérez Trujillo JP (2003) Selenium and mercury concentrations in sweet and dry bottled wines from the Canary Islands, Spain. Food Addit Contam 20:237–240. https://doi.org/10.1080/0265203021000050626. (PMID: 10.1080/0265203021000050626)
Galea S, Tracy M (2007) Participation rates in epidemiologic studies. Ann Epidemiol 17:643–653. https://doi.org/10.1016/j.annepidem.2007.03.013. (PMID: 10.1016/j.annepidem.2007.03.013)
Gianelli G, Puxeddu M, Batini F, Bertini G, Dini I, Pandeli E et al (1988) Geological model of a young volcanoplutonic system: the geothermal region of Monte Amiata (Tuscany Italy). Geothermics 17:719–734. (PMID: 10.1016/0375-6505(88)90033-8)
Golding J, Steer CD, Hibbeln JR, Emmett PM, Lowery T, Jones R (2013) Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environ Health Perspect 121:1214–1218. https://doi.org/10.1289/ehp.1206115. (PMID: 10.1289/ehp.1206115)
Gray JE, Rimondi V, Costagliola P, Vaselli O, Lattanzi P (2014) Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy Environ. Geochem Health 36:145–157. (PMID: 10.1007/s10653-013-9525-z)
He Y, Zheng Y (2010) Assessment of in vivo bioaccessibility of arsenic in dietary rice by a mass -balance approach. Sci Total Environ 408:1430–1436. https://doi.org/10.1016/j.scitotenv.2009.12.043. (PMID: 10.1016/j.scitotenv.2009.12.043)
Hoet P, Jacquerye C, Deumer G, Lison D, Haufroid V (2013) Reference values and upper reference limits for 26 trace elements in the urine of adults living in Belgium. Clin Chem Lab Med 51(4):839–849. https://doi.org/10.1515/cclm-2012-0688. (PMID: 10.1515/cclm-2012-0688)
Hinwood AL, Sim MR, Jolley D, de Klerk N, Bastone EB, Gerostamoulos J et al (2003) Risk factors for increased urinary inorganic arsenic concentrations from low arsenic concentrations in drinking water. Int J Environ Health Res 13:271–284. https://doi.org/10.1080/0960312031000122424. (PMID: 10.1080/0960312031000122424)
Hudgens EE, Drobna Z, He B, Le XC, Styblo M, Rogers J et al (2016) Biological and behavioral factors modify urinary arsenic metabolic profiles in a U.S. population. Environ Health 15:62. https://doi.org/10.1186/s12940-016-0144-x. (PMID: 10.1186/s12940-016-0144-x)
International Agency for Research on Cancer IARC (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. IARC Monogr Eval Carcinog Risks Hum 58:1–415.
International Agency for Research on Cancer IARC (2012) Arsenic, metals, fibres, and dusts. World Health Organization Lyon, France.
Lattanzi P, Rimondi V, Chiarantini L, Colica A, Benvenuti M, Costagliola P et al (2017) Mercury Dispersion through Streams Draining The Mt. Amiata District, Southern Tuscany, iTALY. Procedia Earth Planet Sci 17:468–471. https://doi.org/10.1016/j.proeps.2016.12.118. (PMID: 10.1016/j.proeps.2016.12.118)
Lazzaroni M, Vetuschi Zuccolini M, Nisi B, Cabassi J, Caliro S, Rappuoli D et al (2022) Mercury and arsenic discharge from circumneutral waters associated with the former mining area of Abbadia San Salvatore (Tuscany, Central Italy). Int J Environ Res Public Health 19:5131. https://doi.org/10.3390/ijerph19095131. (PMID: 10.3390/ijerph19095131)
Li P, Feng X, Qiu G (2010) Methylmercury exposure and health effects from rice and fish consumption: a review. Int J Environ Res Public Health 7:2666–91. https://doi.org/10.3390/ijerph7062666. (PMID: 10.3390/ijerph7062666)
Lindberg AL, Ekström EC, Nermell B, Rahman M, Lönnerdal B, Persson LA et al (2008) Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environ Res 106:110–120. https://doi.org/10.1016/j.envres.2007.08.011. (PMID: 10.1016/j.envres.2007.08.011)
Marroni M, Moratti G, Costantini A, Conticelli S, Benvenuti M, Pandolfi L et al (2015) Geology of the Monte Amiata Region, Southern Tuscany, Central Italy. Ital J Geosci 134:177–199.
Minichilli F, Nuvolone D, Bustaffa E, Cipriani F, Vigotti MA, Bianchi F (2012) Stato di salute delle popolazioni residenti nelle aree geotermiche della Toscana [State of health of populations residing in geothermal areas of Tuscany]. Epidemiol Prev 36:1–104 (Italian).
Morton J, Tan E, Leese E, Cocker J (2014) Determination of 61 elements in urine samples collected from a non-occupationally exposed UK adult population. Toxicol Lett 231(2):179–93. https://doi.org/10.1016/j.toxlet.2014.08.019. (PMID: 10.1016/j.toxlet.2014.08.019)
Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E (2011) Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ Res 111:110–118. https://doi.org/10.1016/j.envres.2010.10.009. (PMID: 10.1016/j.envres.2010.10.009)
Nisse C, Tagne-Fotso R, Howsam M, Richeval C, Labat L, Leroyer A (2017) Blood and urinary levels of metals and metalloids in the general adult population of Northern France: The IMEPOGE study, 2008–2010. Int J Hyg Environ Health 220(2PtB):341–363. https://doi.org/10.1016/j.ijheh.2016.09.020. (PMID: 10.1016/j.ijheh.2016.09.020)
Nohr EA, Frydenberg M, Henriksen TB, Olsen J (2006) Does low participation in cohort studies induce bias? Epidemiology 17:413–418. https://doi.org/10.1097/01.ede.0000220549.14177.60. (PMID: 10.1097/01.ede.0000220549.14177.60)
Nuvolone D, Petri D, Pepe P, Voller F (2019) Health effects associated with chronic exposure to low-level hydrogen sulfide from geothermoelectric power plants. A residential cohort study in the geothermal area of Mt. Amiata in Tuscany. Sci Total Environ 659:973–982. (PMID: 10.1016/j.scitotenv.2018.12.363)
Nuvolone D, Petri D, Biggeri A, Barbone F, Voller F (2020) Health effects associated with short-term exposure to hydrogen sulfide from geothermal power plants: a case-crossover study in the geothermal areas in Tuscany. Int Arch Occup Environ Health 93:669–682. (PMID: 10.1007/s00420-020-01522-9)
Nuvolone D, Stoppa G, Petri D, Profili F, Bartolacci S, Monnini M et al (2021) Geotermia e salute in Toscana. Regione Toscana, Firenze. ISBN 978–88–909729–7–3.
Park S, Lee BK (2013) Strong positive associations between seafood, vegetables, and alcohol with blood mercury and urinary arsenic levels in the Korean adult population. Arch Environ Contam Toxicol 64:160–170. https://doi.org/10.1007/s00244-012-9808-x. (PMID: 10.1007/s00244-012-9808-x)
Razzano F, Cei M (2015) Geothermal power generation in Italy 2010–2014 update report. Proceedings World Geothermal Congress 2015 Melbourne, Australia.
Richardson GM, Wilson R, Allard D, Purtill C, Douma S, Gravière J (2011) Mercury exposure and risks from dental amalgam in the US population, post-2000. Sci Total Environ 409:4257–4268. https://doi.org/10.1016/j.scitotenv.2011.06.035. (PMID: 10.1016/j.scitotenv.2011.06.035)
Rimondi V, Gray JE, Costagliola P, Vaselli O, Lattanzi P (2012) Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. Sci Total Environ 414:318–327. (PMID: 10.1016/j.scitotenv.2011.10.065)
Rimondi V, Chiarantini L, Lattanzi P, Benvenuti M, Beutel M, Colica A et al (2015) Exploitation and environmental impact of the Mt. Amiata mercury ore district (Southern Tuscany, Italy). Ital J Geosci 134:75–88.
Santos S, Lapa N, Alves A, Morais J, Mendes B (2013) Analytical methods and validation for determining trace elements in red wines. J Environ Sci Health B 48:364–375. https://doi.org/10.1080/03601234.2013.742374. (PMID: 10.1080/03601234.2013.742374)
Schuttelaar MLA, Ofenloch RF, Bruze M, Cazzaniga S, Elsner P, Gonçalo M et al (2018) Prevalence of contact allergy to metals in the European general population with a focus on nickel and piercings: The EDEN Fragrance Study. Contact Dermatitis 79:1–9. https://doi.org/10.1111/cod.12983. (PMID: 10.1111/cod.12983)
Sherlock JC, Smart GA (1986) Thallium in foods and the diet. Food Addit Contam 3:363–370. https://doi.org/10.1080/02652038609373603. (PMID: 10.1080/02652038609373603)
Tuček M, Bušová M, Čejchanová M, Schlenker A, Kapitán M (2020) Exposure to mercury from dental amalgam: actual contribution for risk assessment. Cent Eur J Public Health 28:40–43. https://doi.org/10.21101/cejph.a5965. (PMID: 10.21101/cejph.a5965)
Uter W, Wolter J (2018) Nickel and cobalt release from earrings and piercing jewellery - analytical results of a German survey in 2014. Contact Dermatitis 78:321–328. https://doi.org/10.1111/cod.12941. (PMID: 10.1111/cod.12941)
Wang Y, Habibullah-Al-Mamun M, Han J et al (2020) Total mercury and methylmercury in rice: Exposure and health implications in Bangladesh. Environ Pollut 265:114991. https://doi.org/10.1016/j.envpol.2020.114991. (PMID: 10.1016/j.envpol.2020.114991)
Winder AF, Astbury NJ, Sheraidah GA, Ruben M (1980) Penetration of mercury from ophthalmic preservatives into the human eye. Lancet 2:237–239. https://doi.org/10.1016/s0140-6736(80)90125-7. (PMID: 10.1016/s0140-6736(80)90125-7)
World Health Organization WHO/IPCS (1996) Thallium. Environmental Health Criteria 182. World Health Organization, Geneva 1996, Switzerland. http://www.inchem.org/documents/ehc/ehc/ehc182.htm . Accessed 11 July 2022.
World Health Organization WHO (1996) Biological monitoring of chemical exposure in workplace. Volume 1 Geneva: World Health Organization. https://apps.who.int/iris/handle/10665/41856 . Accessed 11 July 2022.
معلومات مُعتمدة: 973 Regione Toscana
فهرسة مساهمة: Keywords: Arsenic; Cross-sectional study; Geothermal areas; Human biomonitoring; Mercury; Metals; Mining activity; Thallium
المشرفين على المادة: 00BH33GNGH (Cadmium)
0 (Metals, Heavy)
0R0008Q3JB (Chromium)
42Z2K6ZL8P (Manganese)
FXS1BY2PGL (Mercury)
7OV03QG267 (Nickel)
N712M78A8G (Arsenic)
AD84R52XLF (Thallium)
3G0H8C9362 (Cobalt)
تواريخ الأحداث: Date Created: 20221228 Date Completed: 20230329 Latest Revision: 20230329
رمز التحديث: 20230329
DOI: 10.1007/s11356-022-24953-y
PMID: 36577821
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-022-24953-y