دورية أكاديمية

A CRISPR Platform for Targeted In Vivo Screens.

التفاصيل البيبلوغرافية
العنوان: A CRISPR Platform for Targeted In Vivo Screens.
المؤلفون: Maranda V; Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada., Zhang Y; Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada., Vizeacoumar FS; Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Canada., Freywald A; Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Canada. andrew.freywald@usask.ca., Vizeacoumar FJ; Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada. franco.vizeacoumar@usask.ca.; Cancer Research Department, Saskatchewan Cancer Agency, Saskatoon, Canada. franco.vizeacoumar@usask.ca.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2023; Vol. 2614, pp. 397-409.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: CRISPR-Cas Systems*/genetics , Neoplasms*/genetics, Humans ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; Genome ; Tumor Microenvironment/genetics
مستخلص: Large-scale genetic screens are becoming increasingly used as powerful tools to query the genome to identify therapeutic targets in cancer. The advent of the CRISPR technology has revolutionized the effectiveness of these screens and has made it possible to carry out loss-of-function screens to identify cancer-specific genetic interactions. Such loss-of-function screens can be performed in silico, in vitro, and in vivo, depending on the scale of the screen, as well as research questions to be answered. Performing screens in vivo has its challenges but also advantages, providing opportunities to study the tumor microenvironment and cancer immunity. In this chapter, we present a procedural framework and associated notes for conducting in vivo CRISPR knockout screens in cancer models to study cancer biology, anti-tumor immune responses, tumor microenvironment, and predicting treatment responses.
(© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Hart T, Brown KR, Sircoulomb F et al (2014) Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol 10:733. (PMID: 10.15252/msb.20145216)
Castells-Roca L, Tejero E, Rodríguez-Santiago B et al (2021) CRISPR screens in synthetic lethality and combinatorial therapies for cancer. Cancers (Basel) 13:1591. (PMID: 10.3390/cancers13071591)
Wang T, Birsoy K, Hughes NW et al (2015) Identification and characterization of essential genes in the human genome. Science 350:1096–1101. (PMID: 10.1126/science.aac7041)
Iorio F, Behan FM, Gonçalves E et al (2018) Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting. BMC Genomics 19:604. (PMID: 10.1186/s12864-018-4989-y)
Wang W, Malyutina A, Pessia A et al (2019) Combined gene essentiality scoring improves the prediction of cancer dependency maps. EBioMedicine 50:67–80. (PMID: 10.1016/j.ebiom.2019.10.051)
Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87. (PMID: 10.1126/science.1247005)
Wang T, Wei JJ, Sabatini DM et al (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84. (PMID: 10.1126/science.1246981)
Zhou Y, Zhu S, Cai C et al (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–491. (PMID: 10.1038/nature13166)
Koike-Yusa H, Li Y, Tan E-P et al (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32:267–273. (PMID: 10.1038/nbt.2800)
Chafe SC, Vizeacoumar FS, Venkateswaran G et al (2021) Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. Sci Adv 7:eabj0364. (PMID: 10.1126/sciadv.abj0364)
Cunningham CE, MacAuley MJ, Yadav G et al (2019) Targeting the CINful genome: strategies to overcome tumor heterogeneity. Prog Biophys Mol Biol 147:77–91. (PMID: 10.1016/j.pbiomolbio.2019.02.006)
Parameswaran S, Kundapur D, Vizeacoumar FS et al (2019) A road map to personalizing targeted cancer therapies using synthetic lethality. Trends Cancer 5:11–29. (PMID: 10.1016/j.trecan.2018.11.001)
Paul JM, Templeton SD, Baharani A et al (2014) Building high-resolution synthetic lethal networks: a ‘Google map’ of the cancer cell. Trends Mol Med 20:704–715. (PMID: 10.1016/j.molmed.2014.09.009)
Kryukov GV, Wilson FH, Ruth JR et al (2016) MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351:1214–1218. (PMID: 10.1126/science.aad5214)
Kirzinger MWB, Vizeacoumar FS, Haave B et al (2019) Humanized yeast genetic interaction mapping predicts synthetic lethal interactions of FBXW7 in breast cancer. BMC Med Genomics 12:112. (PMID: 10.1186/s12920-019-0554-z)
McManus KJ, Barrett IJ, Nouhi Y et al (2009) Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc Natl Acad Sci U S A 106:3276–3281. (PMID: 10.1073/pnas.0813414106)
MacAuley MJ, Abuhussein O, Vizeacoumar FS (2021) Identification of synthetic lethal interactions using high-throughput, arrayed CRISPR/Cas9-based platforms. Methods Mol Biol 2381:135–149. (PMID: 10.1007/978-1-0716-1740-3_7)
Liu D, Zhao X, Tang A et al (1874) CRISPR screen in mechanism and target discovery for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2020:188378.
Manguso RT, Pope HW, Zimmer MD et al (2017) In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547:413–418. (PMID: 10.1038/nature23270)
Schaefer C, Mallela N, Seggewiß J et al (2018) Target discovery screens using pooled shRNA libraries and next-generation sequencing: a model workflow and analytical algorithm. PLoS One 13:e0191570. (PMID: 10.1371/journal.pone.0191570)
Dahn ML, Marcato P (2021) In vivo genome-wide pooled RNAi screens in cancer cells to identify determinants of chemotherapy/drug response. In: Vizeacoumar FJ, Freywald A (eds) Mapping genetic interactions. Springer, New York, pp 189–200. (PMID: 10.1007/978-1-0716-1740-3_10)
Giuliano CJ, Lin A, Girish V et al (2019) Generating single cell–derived knockout clones in mammalian cells with CRISPR/Cas9. Curr Protoc Mol Biol 128:e100. (PMID: 10.1002/cpmb.100)
Colic M, Hart T (2021) Common computational tools for analyzing CRISPR screens. Emerg Top Life Sci 5:779–788. (PMID: 10.1042/ETLS20210222)
Li W, Xu H, Xiao T et al (2014) MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15:554. (PMID: 10.1186/s13059-014-0554-4)
فهرسة مساهمة: Keywords: CRISPR-Cas9 screen; In vivo screen; Pooled screen; Synthetic lethality
تواريخ الأحداث: Date Created: 20221231 Date Completed: 20230103 Latest Revision: 20230305
رمز التحديث: 20240829
DOI: 10.1007/978-1-0716-2914-7_24
PMID: 36587138
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-2914-7_24