دورية أكاديمية

Tissue-resident memory T (T RM ) cells: Front-line workers of the immune system.

التفاصيل البيبلوغرافية
العنوان: Tissue-resident memory T (T RM ) cells: Front-line workers of the immune system.
المؤلفون: Osman M; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia., Park SL; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA., Mackay LK; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
المصدر: European journal of immunology [Eur J Immunol] 2023 Nov; Vol. 53 (11), pp. e2250060. Date of Electronic Publication: 2023 Jan 18.
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 1273201 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4141 (Electronic) Linking ISSN: 00142980 NLM ISO Abbreviation: Eur J Immunol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Weinheim : Wiley-VCH
Original Publication: Weinheim, Verlag Chemie GmbH.
مواضيع طبية MeSH: CD8-Positive T-Lymphocytes* , Vaccines*, Humans ; Immunologic Memory ; Immune System ; Vaccination
مستخلص: Tissue-resident memory T (T RM ) cells play a vital role in local immune protection against infection and cancer. The location of T RM cells within peripheral tissues at sites of pathogen invasion allows for the rapid detection and elimination of microbes, making their generation an attractive goal for the development of next-generation vaccines. Here, we discuss differential requirements for CD8 + T RM cell development across tissues with implications for establishing local prophylactic immunity, emphasizing the role of tissue-derived factors, local antigen, and adjuvants on T RM cell generation in the context of vaccination.
(© 2023 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.)
References: Pollard, A. J. and Bijker, E. M., A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 2020. 21: 83-100.
Wherry, E. J and Barouch, D. H., T cell immunity to COVID-19 vaccines. Science 2022. 377: 821-822.
Jiang, X., Clark, R. A., Liu, L., Wagers, A. J., Fuhlbrigge, R. C. and Kupper, T. S., Skin infection generates non-migratory memory CD8 + T RM cells providing global skin immunity. Nature 2012. 483: 227-231.
Ariotti, S., Hogenbirk, M. A., Dijkgraaf, F. E., Visser, L. L., Hoekstra, M. E., Song, J. - Y., Jacobs, H. et al., Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 2014. 346: 101-105.
Schenkel, J. M., Fraser, K. A., Vezys, V. and Masopust, D., Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 2013. 14: 509-513.
Schenkel, J. M., Fraser, K. A., Beura, L. K., Pauken, K. E., Vezys, V., Masopust, D. et al., Resident memory CD8 t cells trigger protective innate and adaptive immune responses. Science 2014. 346: 98-101.
Sallusto, F., Lenig, D., Förster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708-712.
Wherry, E. J, Teichgräber, V., Becker, T. C., Masopust, D., Kaech, S. M., Antia, R., Von Andrian, U. H. et al., Lineage relationship and protective immunity of memory CD8T cell subsets. Nat. Immunol. 2003. 4: 225-234.
Masopust, D., Choo, D., Vezys, V., Wherry, E. J, Duraiswamy, J., Akondy, R., Wang, J. et al., Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 2010. 207: 553-564.
Gebhardt, T., Wakim, L. M., Eidsmo, L., Reading, P. C., Heath, W. R. and Carbone, F. R., Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 2009. 10: 524-530.
Mackay, L. K., Rahimpour, A., Ma, J. Z., Collins, N., Stock, A. T., Hafon, M-Li, Vega-Ramos, J. et al., The developmental pathway for CD103(+) CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 2013. 14: 1294-1301.
Mackay, L. K., Minnich, M., Kragten, N. A. M., Liao, Y., Nota, B., Seillet, C., Zaid, A. et al., Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 2016. 352: 459-463.
Szabo, P. A., Miron, M. and Farber, D. L., Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 2019. 4: eaas9673.
Kok, L., Masopust, D. and Schumacher, T. N., The precursors of CD8+ tissue resident memory T cells: from lymphoid organs to infected tissues. Nat. Rev. Immunol. 2021. 22: 283-293.
Mueller, S. N. and Mackay, L. K., Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 2015. 16: 79-89.
Evrard, M., Wynne-Jones, E., Peng, C., Kato, Yu, Christo, S. N., Fonseca, R., Park, S. L. et al., Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. J. Exp. Med. 2022. 219: e20210116.
Mackay, L. K. and Kallies, A., Transcriptional regulation of tissue-resident lymphocytes. Trends Immunol. 2017. 38, 94-103.
Milner, J. J. and Goldrath, A. W., Transcriptional programming of tissue-resident memory CD8 + T cells. Curr. Opin. Immunol. 2018. 51: 162-169.
Christo, S. N., Evrard, M., Park, S. L., Gandolfo, L. C., Burn, T. N., Fonseca, R., Newman, D. M. et al., Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nat. Immunol. 2021. 22: 1140-1151.
Crowl, J. T., Heeg, M., Ferry, A., Milner, J. J, Omilusik, K. D., Toma, C., He, Z. et al., Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. Nat. Immunol. 2022. 23: 1121-1131.
Mackay, L. K., Stock, A. T., Ma, J. Z., Jones, C. M., Kent, S. J., Mueller, S. N., Heath, W. R., et al., Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl. Acad. Sci. USA 2012. 109: 7037-7042.
Casey, K. A., Fraser, K. A., Schenkel, J. M., Moran, A., Abt, M. C., Beura, L. K., Lucas, P. J. et al., Antigen independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 2012. 188: 4866.
Holz, L. E., Prier, J. E., Freestone, D., Steiner, T. M., English, K., Johnson, D. N., Mollard, V. et al., CD8+ T cell activation leads to constitutive formation of liver tissue-resident memory T cells that seed a large and flexible niche in the liver. Cell Rep. 2018. 25, 68-79.e4.
Park, S. L., Zaid, A., Hor, J. L., Christo, S. N., Prier, J. E., Davies, B., Alexandre, Y. O. et al., Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat Immunol 2018. 19: 183-191.
Shin, H., Iwasaki, A., A vaccine strategy protects against genital herpes by establishing local memory T cells. Nature 2012. 491: 463.
Bergsbaken, T. and Bevan, M. J., Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8+ T cells responding to infection. Nat. Immunol. 2015. 16: 406-414.
Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. and Nolz, J. C., Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med. 2016. 213: 951-966.
Muschaweckh, A., Buchholz, V. R., Fellenzer, A., Hessel, C., König, P. -. A., Tao, S., Tao, R. et al., Antigen-dependent competition shapes the local repertoire of tissue-resident memory CD8+ T cells. J. Exp. Med. 2016. 213: 3075-3086.
Davies, B., Prier, J. E., Jones, C. M., Gebhardt, T., Carbone, F. R. and Mackay, L. K., Cutting edge: tissue-resident memory T cells generated by multiple immunizations or localized deposition provide enhanced immunity. J. Immunol. 2017. 198: 2233-2237.
Wakim, L. M., Woodward-Davis, A. and Bevan, M. J., Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl. Acad. Sci. USA 2010. 107: 17872-17879.
Wakim, L. M., Smith, J., Caminschi, I., Lahoud, M. H. and Villadangos, J. A., Antibody-targeted vaccination to lung dendritic cells generates tissue-resident memory CD8 T cells that are highly protective against influenza virus infection. Mucosal Immunol. 2015. 8: 1060-1071.
Mcmaster, S. R., Wein, A. N., Dunbar, P. R., Hayward, S. L., Cartwright, E. K., Denning, T. L. and Kohlmeier, J. E., Pulmonary antigen encounter regulates the establishment of tissue-resident CD8 memory T cells in the lung airways and parenchyma. Mucosal Immunol. 2018. 11: 1071-1078.
Wein, A. N., Mcmaster, S. R., Takamura, S., Dunbar, P. R., Cartwright, E. K., Hayward, S. L., Mcmanus, D. T., et al., CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. J. Exp. Med. 2019. 216: 2748-2762.
Caminschi, I., Lahoud, M. H., Pizzolla, A., Wakim, L. M., Zymosan by-passes the requirement for pulmonary antigen encounter in lung tissue-resident memory CD8+ T cell development. Mucosal Immunol. 2019. 12: 403-412.
Fernandez-Ruiz, D., Ng, W. Y., Holz, L. E., Ma, J. Z., Zaid, A., Wong, Y. C., Lau, L. S., et al., Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 2016. 45: 889-902.
Schiffer, J. T., Abu-Raddad, L., Mark, K. E., Zhu, J., Selke, S., Koelle, D. M., Wald, A., et al. Mucosal host immune response predicts the severity and duration of herpes simplex virus-2 genital tract shedding episodes. Proc. Natl. Acad. Sci. USA 2010. 107: 18973-18978.
Bartolomé-Casado, R., Landsverk, O. J. B., Chauhan, S. K., Richter, L., Phung, D., Greiff, V., Risnes, L. F. et al., Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med. 2019. 216: 2412-2426.
Lian, C. G., Bueno, E. M., Granter, S. R., Laga, A. C., Saavedra, A. P., Lin, W. M., Susa, J. S. et al., Biomarker evaluation of face transplant rejection: association of donor T cells with target cell injury. Mod. Pathol. 2014. 27: 788-799.
Wu, T., Hu, Y., Lee, Y. -. T., Bouchard, K. R., Benechet, A., Khanna, K. and Cauley, L. S., Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection . J. Leukoc Biol. 2014. 95: 215-224.
Slütter, B., Van Braeckel-Budimir, N., Abboud, G., Varga, S. M., Salek-Ardakani, S. and Harty, J. T., Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity. Sci. Immunol. 2017. 2: eaag2031.
Stolley, J. M, Johnston, T. S., Soerens, A. G., Beura, L. K., Rosato, P. C., Joag, V., Wijeyesinghe, S. P. et al., Retrograde migration supplies resident memory T cells to lung-draining ln after influenza infection. J. Exp. Med. 2020. 217: e20192197.
Pizzolla, A., Nguyen, T. H. O., Smith, J. M., Brooks, A. G., Kedzierska, K., Heath, W. R., Reading, P. C., et al., Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci. Immunol. 2017. 2: eaam6970.
Frizzell, H., Fonseca, R., Christo, S. N., Evrard, M., Cruz-Gomez, S., Zanluqui, N. G., Von Scheidt, B. et al., Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes. Sci. Immunol. 2020. 5: eaay9283.
Enamorado, M., Iborra, S., Priego, E., Cueto, F. J., Quintana, J. A., Martínez-Cano, S., Mejías-Pérez, E. et al., Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nat. Commun. 2017. 8: 16073.
Darrah, P. A., Zeppa, J. J., Maiello, P., Hackney, J. A., Wadsworth, M. H., Hughes, T. K., Pokkali, S. et al., Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 2020. 577: 95-102.
Gopinath, S., Lu, P. and Iwasaki, A., Cutting edge: the use of topical aminoglycosides as an effective pull in “prime and pull” vaccine strategy. J. Immunol. 2020. 204: 1703-1707.
Hirai, T., Yang, Yi, Zenke, Y., Li, H., Chaudhri, V. K., De La Cruz Diaz, J. S., Zhou, P. Y. et al., Competition for active TGFβ cytokine allows for selective retention of antigen-specific tissue- resident memory T cells in the epidermal niche. Immunity 2021. 54, 84-98.e5.
Gola, A., Silman, D., Walters, A. A., Sridhar, S., Uderhardt, S., Salman, A. M., Halbroth, B. R. et al., Prime and target immunization protects against liver-stage malaria in mice. Sci. Transl. Med. 2018. 10: eaap9128.
Masopust, D., Ha, S. -. J., Vezys, V. and Ahmed, R., Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J. Immunol. 2006. 177: 831-839.
Schenkel, J. M., Fraser, K. A., Casey, K. A., Beura, L. K., Pauken, K. E., Vezys, V. and Masopust, D., IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells. J. Immunol. 2016. 196: 3920-3926.
van Braeckel-Budimir, N., Varga, S. M., Badovinac, V. P. and Harty, J. T., Repeated antigen exposure extends the durability of influenza-specific lung-resident memory CD8+ T cells and heterosubtypic immunity. Cell Rep. 2018. 24: 3374.
Mao, T., Israelow, B., Suberi, A., Zhou, L., Reschke, M., Peña-Hernández, M. A., Dong, H. et al., Unadjuvanted intranasal spike vaccine booster elicits robust protective mucosal immunity against sarbecoviruses. Biorxiv 2022. https://doi.org/10.1101/2022.01.24.477597.
Künzli, M., O'Flanagan, S. D., LaRue, M., Talukder, P., Dileepan, T., Soerens, A. G., Quarnstrom, C. F. et al., Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells. Biorxiv 2022. https://doi.org/10.1101/2022.06.02.494574.
Farber, D. L., Tissues, not blood, are where immune cells function. Nature 2021. 593: 506-509.
فهرسة مساهمة: Keywords: T cell memory; mucosal vaccination; peripheral immunity; tissue-resident memory T cells
المشرفين على المادة: 0 (Vaccines)
تواريخ الأحداث: Date Created: 20230104 Date Completed: 20231102 Latest Revision: 20231114
رمز التحديث: 20231115
DOI: 10.1002/eji.202250060
PMID: 36597841
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4141
DOI:10.1002/eji.202250060