دورية أكاديمية

Identification of astrocyte regulators by nucleic acid cytometry.

التفاصيل البيبلوغرافية
العنوان: Identification of astrocyte regulators by nucleic acid cytometry.
المؤلفون: Clark IC; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.; Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.; Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA., Wheeler MA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Lee HG; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Li Z; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Sanmarco LM; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Thaploo S; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Polonio CM; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Shin SW; Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA., Scalisi G; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Henry AR; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA., Rone JM; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Giovannoni F; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Charabati M; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Akl CF; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Aleman DM; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Zandee SEJ; Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada., Prat A; Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada., Douek DC; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA., Boritz EA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA., Quintana FJ; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. fquintana@rics.bwh.harvard.edu.; Broad Institute of MIT and Harvard, Cambridge, MA, USA. fquintana@rics.bwh.harvard.edu., Abate AR; Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA. adam@abatelab.org.
المصدر: Nature [Nature] 2023 Feb; Vol. 614 (7947), pp. 326-333. Date of Electronic Publication: 2023 Jan 04.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Astrocytes*/metabolism , Astrocytes*/pathology , Encephalomyelitis, Autoimmune, Experimental* , Multiple Sclerosis*/pathology , Microfluidics*/methods , Single-Cell Gene Expression Analysis*/methods , Nucleic Acids*/analysis, Animals ; Humans ; Mice ; Gene Expression Regulation ; Mice, Knockout ; Gene Editing
مستخلص: Multiple sclerosis is a chronic inflammatory disease of the central nervous system 1 . Astrocytes are heterogeneous glial cells that are resident in the central nervous system and participate in the pathogenesis of multiple sclerosis and its model experimental autoimmune encephalomyelitis 2,3 . However, few unique surface markers are available for the isolation of astrocyte subsets, preventing their analysis and the identification of candidate therapeutic targets; these limitations are further amplified by the rarity of pathogenic astrocytes. Here, to address these challenges, we developed focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), a high-throughput microfluidic cytometry method that combines encapsulation of cells in droplets, PCR-based detection of target nucleic acids and droplet sorting to enable in-depth transcriptomic analyses of cells of interest at single-cell resolution. We applied FIND-seq to study the regulation of astrocytes characterized by the splicing-driven activation of the transcription factor XBP1, which promotes disease pathology in multiple sclerosis and experimental autoimmune encephalomyelitis 4 . Using FIND-seq in combination with conditional-knockout mice, in vivo CRISPR-Cas9-driven genetic perturbation studies and bulk and single-cell RNA sequencing analyses of samples from mouse experimental autoimmune encephalomyelitis and humans with multiple sclerosis, we identified a new role for the nuclear receptor NR3C2 and its corepressor NCOR2 in limiting XBP1-driven pathogenic astrocyte responses. In summary, we used FIND-seq to identify a therapeutically targetable mechanism that limits XBP1-driven pathogenic astrocyte responses. FIND-seq enables the investigation of previously inaccessible cells, including rare cell subsets defined by unique gene expression signatures or other nucleic acid markers.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Baecher-Allan, C., Kaskow, B. J. & Weiner, H. L. Multiple sclerosis: mechanisms and immunotherapy. Neuron 97, 742–768 (2018). (PMID: 10.1016/j.neuron.2018.01.021)
Lee, H.-G., Wheeler, M. A. & Quintana, F. J. Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discovery 21, 339–358 (2022). (PMID: 10.1038/s41573-022-00390-x)
Linnerbauer, M., Wheeler, M. A. & Quintana, F. J. Astrocyte crosstalk in cns inflammation. Neuron 108, 608–622 (2020). (PMID: 10.1016/j.neuron.2020.08.012)
Wheeler, M. A. et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176, 581–596.e518 (2019). (PMID: 10.1016/j.cell.2018.12.012)
Börner, K. et al. Anatomical structures, cell types and biomarkers of the human reference atlas. Nat. Cell Biol. 23, 1117–1128 (2021). (PMID: 10.1038/s41556-021-00788-6)
Ginhoux, F., Yalin, A., Dutertre, C. A. & Amit, I. Single-cell immunology: past, present, and future. Immunity 55, 393–404 (2022). (PMID: 10.1016/j.immuni.2022.02.006)
Rozenblatt-Rosen, O. et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020). (PMID: 10.1016/j.cell.2020.03.053)
Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021). (PMID: 10.1126/science.abf7844)
Giladi, A. et al. Cxcl10 + monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation. Nat. Immunol. 21, 525–534 (2020). (PMID: 10.1038/s41590-020-0661-1)
Grigg, J. B. et al. Antigen-presenting innate lymphoid cells orchestrate neuroinflammation. Nature 600, 707–712 (2021). (PMID: 10.1038/s41586-021-04136-4)
Hiltensperger, M. et al. Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nat. Immunol. 22, 880–892 (2021). (PMID: 10.1038/s41590-021-00948-8)
Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019). (PMID: 10.1126/science.aat7554)
Khakh, B. S. & Deneen, B. The emerging nature of astrocyte diversity. Annu. Rev. Neurosci. 42, 187–207 (2019). (PMID: 10.1146/annurev-neuro-070918-050443)
Sofroniew, M. V. Astrocyte reactivity: subtypes, states, and functions in cns innate immunity. Trends Immunol. 41, 758–770 (2020). (PMID: 10.1016/j.it.2020.07.004)
Absinta, M. et al. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021). (PMID: 10.1038/s41586-021-03892-7)
Chao, C. C. et al. Metabolic control of astrocyte pathogenic activity via cpla2-mavs. Cell 179, 1483–1498.e1422 (2019). (PMID: 10.1016/j.cell.2019.11.016)
Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325 (2021). (PMID: 10.1038/s41593-020-00783-4)
Mayo, L. et al. Regulation of astrocyte activation by glycolipids drives chronic cns inflammation. Nat. Med. 20, 1147–1156 (2014). (PMID: 10.1038/nm.3681)
Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018). (PMID: 10.1038/s41586-018-0119-x)
Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016). (PMID: 10.1038/nm.4106)
Sanmarco, L. M. et al. Gut-licensed IFNγ + NK cells drive LAMP1 + TRAIL + anti-inflammatory astrocytes. Nature 590, 473–479 (2021). (PMID: 10.1038/s41586-020-03116-4)
Wheeler, M. A. et al. Mafg-driven astrocytes promote cns inflammation. Nature 578, 593–599 (2020). (PMID: 10.1038/s41586-020-1999-0)
Habib, N. et al. Disease-associated astrocytes in alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020). (PMID: 10.1038/s41593-020-0624-8)
Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021). (PMID: 10.1038/s41593-021-00905-6)
Amamoto, R. et al. Probe-seq enables transcriptional profiling of specific cell types from heterogeneous tissue by rna-based isolation. eLife 8, e51452 (2019). (PMID: 10.7554/eLife.51452)
Eastburn, D. J., Sciambi, A. & Abate, A. R. Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops. Anal. Chem. 85, 8016–8021 (2013). (PMID: 10.1021/ac402057q)
Eastburn, D. J., Sciambi, A. & Abate, A. R. Identification and genetic analysis of cancer cells with pcr-activated cell sorting. Nucleic Acids Res. 42, e128 (2014). (PMID: 10.1093/nar/gku606)
Calfon, M. et al. Ire1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002). (PMID: 10.1038/415092a)
Clark, I. C. et al. HIV silencing and cell survival signatures in infected T cell reservoirs. Nature https://doi.org/10.1038/s41586-022-05556-6 (2023).
Clark, I. C., Thakur, R. & Abate, A. R. Concentric electrodes improve microfluidic droplet sorting. Lab Chip 18, 710–713 (2018). (PMID: 10.1039/C7LC01242J)
Smith, H. L. et al. Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration. Neuron 105, 855–866.e855 (2020). (PMID: 10.1016/j.neuron.2019.12.014)
Glimcher, L. H., Lee, A. H. & Iwakoshi, N. N. Xbp-1 and the unfolded protein response (UPR). Nat. Immunol. 21, 963–965 (2020). (PMID: 10.1038/s41590-020-0708-3)
Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. Xbp-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459 (2003). (PMID: 10.1128/MCB.23.21.7448-7459.2003)
Arzalluz-Luque, A. & Conesa, A. Single-cell RNAseq for the study of isoforms—how is that possible? Genome Biol. 19, 110 (2018). (PMID: 10.1186/s13059-018-1496-z)
Buen Abad Najar, C. F., Yosef, N. & Lareau, L. F. Coverage-dependent bias creates the appearance of binary splicing in single cells. eLife 9, e54603 (2020). (PMID: 10.7554/eLife.54603)
Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013). (PMID: 10.1038/nmeth.2639)
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). (PMID: 10.1016/j.cell.2015.05.002)
Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021). (PMID: 10.1126/science.abf1230)
Glass, C. K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and t cells. Nat. Rev. Immunol. 10, 365–376 (2010). (PMID: 10.1038/nri2748)
Geller, D. S. et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289, 119–123 (2000). (PMID: 10.1126/science.289.5476.119)
Ruzzo, E. K. et al. Inherited and de novo genetic risk for autism impacts shared networks. Cell 178, 850–866.e826 (2019). (PMID: 10.1016/j.cell.2019.07.015)
Hetz, C. et al. Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc. Natl Acad. Sci. USA 105, 757–762 (2008). (PMID: 10.1073/pnas.0711094105)
Srinivasan, R. et al. New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo. Neuron 92, 1181–1195 (2016). (PMID: 10.1016/j.neuron.2016.11.030)
Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016). (PMID: 10.1038/nature17623)
John Lin, C. C. et al. Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 20, 396–405 (2017). (PMID: 10.1038/nn.4493)
Saijo, K. et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47–59 (2009). (PMID: 10.1016/j.cell.2009.01.038)
Shaked, I. et al. Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation. Nat. Immunol. 16, 1228–1234 (2015). (PMID: 10.1038/ni.3321)
Clarisse, D., Deng, L., de Bosscher, K. & Lother, A. Approaches towards tissue-selective pharmacology of the mineralocorticoid receptor. Br. J. Pharmacol. 179, 3235–3249 (2021). (PMID: 10.1111/bph.15719)
Ayata, P. et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci. 21, 1049–1060 (2018). (PMID: 10.1038/s41593-018-0192-3)
Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018). (PMID: 10.1038/s41586-018-0023-4)
Boulay, A. C. et al. Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discov. 3, 17005 (2017). (PMID: 10.1038/celldisc.2017.5)
Magnusson, J. P. et al. Activation of a neural stem cell transcriptional program in parenchymal astrocytes. eLife 9, e59733 (2020). (PMID: 10.7554/eLife.59733)
Yan, Z., Clark, I. C. & Abate, A. R. Rapid encapsulation of cell and polymer solutions with bubble-triggered droplet generation. Macromol. Chem. Phys. 218, 1600297 (2017). (PMID: 10.1002/macp.201600297)
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal https://doi.org/10.14806/ej.17.1.200 (2011).
Dobin, A. et al. Star: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 10.1093/bioinformatics/bts635)
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from rna-seq data with or without a reference genome. BMC Bioinf. 12, 323 (2011). (PMID: 10.1186/1471-2105-12-323)
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015). (PMID: 10.12688/f1000research.7563.1)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 10.1186/s13059-014-0550-8)
Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019). (PMID: 10.1093/bioinformatics/bty895)
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 10.1073/pnas.0506580102)
Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30, 523–530 (2014). (PMID: 10.1093/bioinformatics/btt703)
Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011). (PMID: 10.1093/bioinformatics/btr064)
Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The meme suite. Nucleic Acids Res. 43, W39–W49 (2015). (PMID: 10.1093/nar/gkv416)
Sandelin, A., Alkema, W., Engstrom, P., Wasserman, W. W. & Lenhard, B. JASPAR: An open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004). (PMID: 10.1093/nar/gkh012)
Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020). (PMID: 10.1038/s41587-020-0497-0)
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016). (PMID: 10.1038/nbt.3519)
Melsted, P., Ntranos, V. & Pachter, L. The barcode, UMI, set format and BUStools. Bioinformatics 35, 4472–4473 (2019). (PMID: 10.1093/bioinformatics/btz279)
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). (PMID: 10.1038/nbt.4096)
Lee, Y., Messing, A., Su, M. & Brenner, M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56, 481–493 (2008). (PMID: 10.1002/glia.20622)
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf. 14, 128 (2013). (PMID: 10.1186/1471-2105-14-128)
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016). (PMID: 10.1093/nar/gkw377)
Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011). (PMID: 10.1002/ana.22366)
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (PMID: 10.1038/nmeth.2019)
معلومات مُعتمدة: R01 MH130458 United States MH NIMH NIH HHS; R01 ES032323 United States ES NIEHS NIH HHS; K99 NS114111 United States NS NINDS NIH HHS; R01 AI126880 United States AI NIAID NIH HHS; DP2 AI154435 United States AI NIAID NIH HHS; F32 NS101790 United States NS NINDS NIH HHS; United Kingdom WT_ Wellcome Trust; U01 AI129206 United States AI NIAID NIH HHS; R00 NS114111 United States NS NINDS NIH HHS; K22 AI152644 United States AI NIAID NIH HHS; R01 ES025530 United States ES NIEHS NIH HHS; R01 AI149699 United States AI NIAID NIH HHS; R21 NS087867 United States NS NINDS NIH HHS; UM1 AI126611 United States AI NIAID NIH HHS; R01 NS129778 United States NS NINDS NIH HHS
المشرفين على المادة: 0 (Xbp1 protein, mouse)
0 (Nucleic Acids)
0 (NR3C2 protein, human)
0 (NCOR2 protein, human)
0 (XBP1 protein, human)
0 (Nr3c2 protein, mouse)
0 (Ncor2 protein, mouse)
تواريخ الأحداث: Date Created: 20230104 Date Completed: 20230217 Latest Revision: 20240312
رمز التحديث: 20240312
مُعرف محوري في PubMed: PMC9980163
DOI: 10.1038/s41586-022-05613-0
PMID: 36599367
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-022-05613-0