دورية أكاديمية

Anatomical and functional study of the cuneiform nucleus: A critical site to organize innate defensive behaviors.

التفاصيل البيبلوغرافية
العنوان: Anatomical and functional study of the cuneiform nucleus: A critical site to organize innate defensive behaviors.
المؤلفون: Bindi RP; Deptarment of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Guimarães CC; Medical School, São Judas University, Cubatão, Brazil., de Oliveira AR; Deptarment of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Melleu FF; Deptarment of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., de Lima MAX; Deptarment of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Baldo MVC; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Motta SC; Deptarment of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Canteras NS; Deptarment of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
المصدر: Annals of the New York Academy of Sciences [Ann N Y Acad Sci] 2023 Mar; Vol. 1521 (1), pp. 79-95. Date of Electronic Publication: 2023 Jan 06.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: New York Academy of Sciences Country of Publication: United States NLM ID: 7506858 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1749-6632 (Electronic) Linking ISSN: 00778923 NLM ISO Abbreviation: Ann N Y Acad Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: 2006- : New York, NY : Malden, MA : New York Academy of Sciences ; Blackwell
Original Publication: New York, The Academy.
مواضيع طبية MeSH: Periaqueductal Gray*/physiology , Midbrain Reticular Formation*, Neurons
مستخلص: The cuneiform nucleus (CUN) is a midbrain structure located lateral to the caudal part of the periaqueductal gray. In the present investigation, we first performed a systematic analysis of the afferent and efferent projections of the CUN using FluoroGold and Phaseolus vulgaris leucoagglutinin as retrograde and anterograde neuronal tracers, respectively. Next, we examined the behavioral responses to optogenetic activation of the CUN and evaluated the impact of pharmacological inactivation of the CUN in both innate and contextual fear responses to a predatory threat (i.e., a live cat). The present hodologic evidence indicates that the CUN might be viewed as a caudal component of the periaqueductal gray. The CUN has strong bidirectional links with the dorsolateral periaqueductal gray (PAGdl). Our hodological findings revealed that the CUN and PAGdl share a similar source of inputs involved in integrating information related to life-threatening events and that the CUN provides particularly strong projections to brain sites influencing antipredatory defensive behaviors. Our functional studies revealed that the CUN mediates innate freezing and flight antipredatory responses but does not seem to influence the acquisition and expression of learned fear responses.
(© 2023 New York Academy of Sciences.)
References: Coles, S. K., Iles, J. F., & Nicolopoulos-Stournaras, S. (1989). The mesencephalic centre controlling locomotion in the rat. Neuroscience, 28, 149-157.
Allen, L. F., Inglis, W. L., & Winn, P. (1996). Is the cuneiform nucleus a critical component of the mesencephalic locomotor region? An examination of the effects of excitotoxic lesions of the cuneiform nucleus on spontaneous and nucleus accumbens induced locomotion. Brain Research Bulletin, 41, 201-210.
Fougère, M., Van Der Zouwen, C. I., Boutin, J., Neszvecsko, K., Sarret, P., & Ryczko, D. (2021). Optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus controls locomotion in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences, 118, e2110934118.
Mitchell, I. J., Dean, P., & Redgrave, P. (1988). The projection from superior colliculus to cuneiform area in the rat. Experimental Brain Research, 72, 626-639.
Redgrave, P., Dean, P., Mitchell, I. J., Odekunle, A., & Clark, A. (1988). The projection from superior colliculus to cuneiform area in the rat. Experimental Brain Research, 72, 611-625.
Furigo, I. C., De Oliveira, W. F., De Oliveira, A. R., Comoli, E., Baldo, M. V. C., Mota-Ortiz, S. R., & Canteras, N. S. (2010). The role of the superior colliculus in predatory hunting. Neuroscience, 165, 1-15.
Dean, P., Redgrave, P., & Westby, G. W. M. (1989). Event or emergency? Two response systems in the mammalian superior colliculus. Trends in Neurosciences, 12, 137-147.
Zemlan, F. P., & Behbehani, M. M. (1988). Nucleus cuneiformis and pain modulation: Anatomy and behavioral pharmacology. Brain Research, 453, 89-102.
Haghparast, A., Gheitasi, I.-P., & Lashgari, R. (2007). Involvement of glutamatergic receptors in the nucleus cuneiformis in modulating morphine-induced antinociception in rats. European Journal of Pain, 11, 855-862.
Haghparast, A., Ordikhani-Seyedlar, M., & Ziaei, M. (2008). Electrolytic lesion of the nucleus raphe magnus reduced the antinociceptive effects of bilateral morphine microinjected into the nucleus cuneiformis in rats. Neuroscience Letters, 438, 351-355.
Verberne, A. J. (1995). Cuneiform nucleus stimulation produces activation of medullary sympathoexcitatory neurons in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 268, R752-R758.
Lam, W., & Verberne, A. J. M. (1997). Cuneiform nucleus stimulation-induced sympathoexcitation: Role of adrenoceptors, excitatory amino acid and serotonin receptors in rat spinal cord. Brain Research, 757, 191-201.
Netzer, F., Bernard, J. F., Verberne, A. J. M., Hamon, M., Camus, F., Benoliel, J. J., & Sévoz-Couche, C. (2011). Brain circuits mediating baroreflex bradycardia inhibition in rats: An anatomical and functional link between the cuneiform nucleus and the periaqueductal grey. Journal of Physiology, 589, 2079-2091.
Netzer, F., & Sévoz-Couche, C. (2021). Rostral cuneiform nucleus and the defence reaction: Direct and indirect midbrain-medullary 5-HT mechanisms in baroreflex inhibition. British Journal of Pharmacology, 178, 1819-1835.
Beitz, A. J. (1989). Possible origin of glutamatergic projections to the midbrain periaqueductal gray and deep layer of the superior colliculus of the rat. Brain Research Bulletin, 23, 25-35.
Zemlan, F. P., & Behbehani, M. M. (1984). Afferent projections to the nucleus cuneiformis in the rat. Neuroscience Letters, 52, 103-109.
Canteras, N. S., & Goto, M. (1999). Fos-like immunoreactivity in the periaqueductal gray of rats exposed to a natural predator. Neuroreport, 10, 413-418.
Comoli, E., Ribeiro-Barbosa, E. R., & Canteras, N. S. (2003). Predatory hunting and exposure to a live predator induce opposite patterns of fos immunoreactivity in the PAG. Behavioural Brain Research, 138, 17-28.
Mcgregor, I. S. (2004). Neural correlates of cat odor-induced anxiety in rats: Region-specific effects of the benzodiazepine midazolam. Journal of Neuroscience, 24, 4134-4144.
Swanson, L. (2004). Brain maps: Structure of the rat brain. Gulf Professional Publishing.
Ribeiro-Barbosa, E., Canteras, N., Cezario, A., Blanchard, R. J., & Blanchard, D. C. (2005). An alternative experimental procedure for studying predator-related defensive responses. Neuroscience & Biobehavioral Reviews, 29, 1255-1263.
Harlan, R. E., Shivers, B. D., Romano, G. J., Pfaff, D. W., & Howells, R. D. (1987). Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization. Journal of Comparative Neurology, 258, 159-184.
Gross, C. T., & Canteras, N. S. (2012). The many paths to fear. Nature Reviews Neuroscience, 13, 651-658.
Cezario, A. F., Ribeiro-Barbosa, E. R., Baldo, M. V. C., & Canteras, N. S. (2008). Hypothalamic sites responding to predator threats-The role of the dorsal premammillary nucleus in unconditioned and conditioned antipredatory defensive behavior. European Journal of Neuroscience, 28, 1003-1015.
Canteras, N. S., & Goto, M. (1999). Connections of the precommissural nucleus. Journal of Comparative Neurology, 408, 23-45.
Arnault, P., & Roger, M. (1987). The connection of the peripeduncular area studied by retrograde and anterograde transport in the rat. Journal of Comparative Neurology, 258, 463-476.
Yasui, Y., Nakano, K., & Mizuno, N. (1992). Descending projections from the subparafascicular thalamic nucleus to the lower brain stem in the rat. Experimental Brain Research, 90, 508-518.
Liu, R.-J., Qiang, M., & Qiao, J.-T. (1998). Nociceptive c-fos expression in supraspinal areas in avoidance of descending suppression at the spinal relay station. Neuroscience, 85, 1073-1087.
Canteras, N. S., Simerly, R. B., & Swanson, L. W. (1994). Organization of projections from the ventromedial nucleus of the hypothalamus: A Phaseolus vulgaris-leucoagglutinin study in the rat. Journal of Comparative Neurology, 348, 41-79.
Canteras, N. S., & Swanson, L. W. (1992). The dorsal premammillary nucleus: An unusual component of the mammillary body. Proceedings of the National Academy of Sciences, 89, 10089-10093.
Shammah-Lagnado, S. J., Alheid, G. F., & Heimer, L. (1996). Efferent connections of the caudal part of the globus pallidus in the rat. Journal of Comparative Neurology, 376, 489-507.
Liang, H., Watson, C., & Paxinos, G. (2015). Projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse. Brain Structure and Function, 220, 263-271.
Rizvi, T. A., Ennis, M., Behbehani, M. M., & Shipley, M. T. (1991). Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: Topography and reciprocity. Journal of Comparative Neurology, 303, 121-131.
Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 16, 317-331.
Han, W., Tellez, L. A., Rangel, M. J., Motta, S. C., Zhang, X., Perez, I. O., Canteras, N. S., Shammah-Lagnado, S. J., Van Den Pol, A. N., & De Araujo, I. E. (2017). Integrated control of predatory hunting by the central nucleus of the amygdala. Cell, 168, 311-324.e18.
Olsen, N., Furlong, T. M., & Carrive, P. (2021). Behavioural and cardiovascular effects of orexin-A infused into the central amygdala under basal and fear conditions in rats. Behavioural Brain Research, 415, 113515.
Tsukioka, K., Yamanaka, K. O., & Waki, H. (2022). Implication of the central nucleus of the amygdala in cardiovascular regulation and limiting maximum exercise performance during high-intensity exercise in rats. Neuroscience, 496, 52-63.
He, F., & Ai, H.-B. (2016). Effects of electrical stimulation at different locations in the central nucleus of amygdala on gastric motility and spike activity. Physiological Research, 65, 693.
Lyubashina, O. A. (2004). Possible mechanisms of involvement of the amygdaloid complex in the control of gastric motor function. Neuroscience and Behavioral Physiology, 34, 379-388.
Goto, M., Canteras, N. S., Burns, G., & Swanson, L. W. (2005). Projections from the subfornical region of the lateral hypothalamic area. Journal of Comparative Neurology, 493, 412-438.
Xiong, X. R., Liang, F., Zingg, B., Ji, X.-Y., Ibrahim, L. A., Tao, H. W., & Zhang, L. I. (2015). Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nature Communications, 6, 1-12.
Assareh, N., Sarrami, M., Carrive, P., & Mcnally, G. P. (2016). The organization of defensive behavior elicited by optogenetic excitation of rat lateral or ventrolateral periaqueductal gray. Behavioral Neuroscience, 130, 406.
Bandler, R., & Keay, K. A. (1996). Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Progress in Brain Research, 107, 285-300.
Bittencourt, A. S., Carobrez, A. P., Zamprogno, L. P., Tufik, S., & Schenberg, L. C. (2004). Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: Role of N-methyl-D-aspartic acid glutamate receptors. Neuroscience, 125, 71-89.
Carrive, P. (1993). The periaqueductal gray and defensive behavior: Functional representation and neuronal organization. Behavioural Brain Research, 58, 27-47.
Deng, H., Xiao, X., & Wang, Z. (2016). Periaqueductal gray neuronal activities underlie different aspects of defensive behaviors. Journal of Neuroscience, 36, 7580-7588.
Evans, D. A., Stempel, A. V., Vale, R., Ruehle, S., Lefler, Y., & Branco, T. (2018). A synaptic threshold mechanism for computing escape decisions. Nature, 558, 590-594.
Kirouac, G. J. (2015). Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neuroscience & Biobehavioral Reviews, 56, 315-329.
Kozak, R., Bowman, E. M., Latimer, M. P., Rostron, C. L., & Winn, P. (2005). Excitotoxic lesions of the pedunculopontine tegmental nucleus in rats impair performance on a test of sustained attention. Experimental Brain Research, 162, 257-264.
Lima, J. D., Sobrinho, C. R., Falquetto, B., Santos, L. K., Takakura, A. C., Mulkey, D. K., & Moreira, T. S. (2019). Cholinergic neurons in the pedunculopontine tegmental nucleus modulate breathing in rats by direct projections to the retrotrapezoid nucleus. Journal of Physiology, 597, 1919-1934.
Di Scala, G., Mana, M. J., Jacobs, W., & Phillips, A. G. (1987). Evidence of pavlovian conditioned fear following electrical stimulation of the periaqueductal grey in the rat. Physiology & Behavior, 40, 55-63.
Di Scala, G., & Sandner, G. (1989). Conditioned place aversion produced by microinjections of semicarbazide into the periaqueductal gray of the rat. Brain Research, 483, 91-97.
Kim, E. J., Horovitz, O., Pellman, B. A., Tan, L. M., Li, Q., Richter-Levin, G., & Kim, J. J. (2013). Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats. Proceedings of the National Academy of Sciences, 110, 14795-14800.
Kincheski, G. C., Mota-Ortiz, S. R., Pavesi, E., Canteras, N. S., & Carobrez, A. P. (2012). The dorsolateral periaqueductal gray and its role in mediating fear learning to life threatening events. PLoS ONE, 7, e50361.
Fanselow, M. S. (1991). The midbrain periaqueductal gray as a coordinator of action in response to fear and anxiety. In A. Depaulis, & R. Bandler (Eds.), The midbrain periaqueductal gray matter: functional, anatomical and neurochemical organization (pp. 151-173). Plenum Press, New York.
Yeh, L.-F., Ozawa, T., & Johansen, J. P. (2021). Functional organization of the midbrain periaqueductal gray for regulating aversive memory formation. Molecular Brain, 14, 1-9.
De Andrade Rufino, R., Mota-Ortiz, S. R., De Lima, M. A. X., Baldo, M. V. C., & Canteras, N. S. (2019). The rostrodorsal periaqueductal gray influences both innate fear responses and acquisition of fear memory in animals exposed to a live predator. Brain Structure and Function, 224, 1537-1551.
De Lima, M. A. X., Baldo, M. V. C., Oliveira, F. A., & Canteras, N. S. (2022). The anterior cingulate cortex and its role in controlling contextual fear memory to predatory threats. eLife, 11, e67007.
Walker, S. C., & Winn, P. (2007). An assessment of the contributions of the pedunculopontine tegmental and cuneiform nuclei to anxiety and neophobia. Neuroscience, 150, 273-290.
Rossier, D., La Franca, V., Salemi, T., Natale, S., & Gross, C. T. (2021). A neural circuit for competing approach and defense underlying prey capture. Proceedings of the National Academy of Sciences, 118, e2013411118.
فهرسة مساهمة: Keywords: contextual fear; defensive behavior; innate fear; periaqueductal gray; rat
تواريخ الأحداث: Date Created: 20230106 Date Completed: 20230327 Latest Revision: 20230417
رمز التحديث: 20240829
DOI: 10.1111/nyas.14954
PMID: 36606723
قاعدة البيانات: MEDLINE
الوصف
تدمد:1749-6632
DOI:10.1111/nyas.14954