دورية أكاديمية

Environmental DNA as an emerging tool in botanical research.

التفاصيل البيبلوغرافية
العنوان: Environmental DNA as an emerging tool in botanical research.
المؤلفون: Johnson MD; Engineering Research and Development Center, Construction Engineering Research Laboratory (CERL), Champaign, IL, USA.; Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA., Freeland JR; Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada., Parducci L; Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.; Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, SE-75236, Uppsala, Sweden., Evans DM; School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK., Meyer RS; Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA., Molano-Flores B; Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA., Davis MA; Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.
المصدر: American journal of botany [Am J Bot] 2023 Feb; Vol. 110 (2), pp. e16120. Date of Electronic Publication: 2023 Feb 03.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 0370467 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1537-2197 (Electronic) Linking ISSN: 00029122 NLM ISO Abbreviation: Am J Bot Subsets: MEDLINE
أسماء مطبوعة: Publication: <2018-> : [Philadelphia, PA] : Wiley
Original Publication: Baltimore Md : Botanical Society Of America
مواضيع طبية MeSH: DNA, Environmental*, DNA Barcoding, Taxonomic/methods ; Biodiversity ; Environmental Monitoring/methods
مستخلص: Over the past quarter century, environmental DNA (eDNA) has been ascendant as a tool to detect, measure, and monitor biodiversity (species and communities), as a means of elucidating biological interaction networks, and as a window into understanding past patterns of biodiversity. However, only recently has the potential of eDNA been realized in the botanical world. Here we synthesize the state of eDNA applications in botanical systems with emphases on aquatic, ancient, contemporary sediment, and airborne systems, and focusing on both single-species approaches and multispecies community metabarcoding. Further, we describe how abiotic and biotic factors, taxonomic resolution, primer choice, spatiotemporal scales, and relative abundance influence the utilization and interpretation of airborne eDNA results. Lastly, we explore several areas and opportunities for further development of eDNA tools for plants, advancing our knowledge and understanding of the efficacy, utility, and cost-effectiveness, and ultimately facilitating increased adoption of eDNA analyses in botanical systems.
(© 2023 The Authors. American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America.)
References: Aalismail, N. A., R. Díaz-Rúa, N. Geraldi, M. Cusack, and C. M. Duarte. 2021. Diversity and sources of airborne eukaryotic communities (AEC) in the global dust belt over the red sea. Earth Systems and Environment 5: 459-471.
Adams, C. I. M., M. Knapp, N. J. Gemmell, G, Jeunen, M, Bunce, M. D. Lamare, and H. R. Taylor. 2019. Beyond biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool? Genes 10: 192.
Agnarson, I., and M. Kunter. 2007. Taxonomy in a changing world: seeking solutions for a science in crisis. Systematic Biology 56: 531-539.
Allaby, R. G., L. Kistler, R. M. Gutaker, R. Ware, J. L. Kitchen, O. Smith, and A. C. Clarke. 2015. Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant-hominin co-evolution back to the Pliocene. Journal of Human Evolution 79: 150-157.
Anderson-Carpenter, L. L., J. S. McLachlan, S. T. Jackson, M. Kuch, C. Y. Lumibae, and H. N. Poinar. 2011. Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC Ecology and Evolution 11: 30.
Andres, K. J., S. A. Sethi, D. M. Lodge, and J. Andres. 2021. Nuclear eDNA estimates population allele frequencies and abundance in experimental mesocosms and field samples. Molecular Ecology 30: 685-697.
Anglès d'Auriac, M. B., D. A. Strand, M. Mjelde, B. O. L. Demars, and J. Thaulow. 2019. Detection of an invasive aquatic plant in natural water bodies using environmental DNA. PLoS One 14: e0219700.
Ariza, M., B. Fouks, Q. Mauvisseau, R. Halvorsen, I. G. Alsos, and H. J. Boer. 2022. Plant biodiversity assessment through soil eDNA reflects temporal and local diversity. Methods in Ecology and Evolution (in press). https://doi.org/10.1111/2041-210X.13865.
Arstingstall, K. A., S. J. DeBano, X. Li, D. E. Wooster, M. M. Rowland, S. Burrows, and K. Frost. 2021. Capabilities and limitations of using DNA metabarcoding to study plant-pollinator interactions. Molecular Ecology 30: 5266-5297.
Baker, C. S., D. Steel, S. Nieukirk, and H. Klinck. 2018. Environmental DNA (eDNA) from the wake of the whales: Droplet digital PCR for detection and species identification. Frontiers in Marine Science 5: 133.
Bakker, J., O. S. Wangensteen, D. D. Champman, G. Boussarie, D. Buddo, T. L. Guttridge, H. Hertler, et al. 2017. Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Scientific Reports 7: 16886.
Balint, M., C. Nowak, O. Marton, S. U. Pauls, C. Wittwer, J. L. Aramayo, A. Schulze, et al. 2018. Accuracy, limitations and cost efficiency of eDNA-based community survey in tropical frogs. Molecular Ecology Resources 18: 1415-1426.
Banchi, E., C. G. Ametrano, E. Tordoni, D. Stankovic, S. Ongaro, M. Tretiach, A. Pallavicini, et al. 2020. Environmental DNA assessment of airborne plant and fungal seasonal diversity. Science of the Total Environment 738: 140249.
Banerjee, P., K. A. Stewart, G. Dey, C. M. Antognazza, R. K. Sharma, J. P. Maity, S. Saha, et al. 2022a. Environmental DNA analysis as an emerging non-destructive method for plant biodiversity monitoring: a review. AoB Plants 14: 1-14.
Banerjee, P., K. A. Steward, C. M. Antognazza, I. V. Bunholi, K. Deiner, M. A. Barnes, and S. Saha. 2022b. Plant-animal interactions in the era of environmental DNA (eDNA)-a review. Environmental DNA 4: 987-999.
Barnes, C. J., I. B. Nielsen, A. Aagaard, R. Ejrnaes, A. J. Hansen, and T. G. Froslev. 2022. Metabarcoding of soil environmental DNA replicates plant community variation but not specificity. Environmental DNA 4: 732-746.
Barnes, M. A., and C. R. Turner. 2016. The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics 17: 1-17.
Bell, K. L., L. V. Loeffler, and B. J. Brosi. 2017. An rbcL reference library to aid in the identification of plant species mixtures by DNA metabarcoding. Applications in Plant Sciences 5: 1600110.
Beng, K. C., and R. T. Corlett. 2020. Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodiversity and Conservation 29: 2089-2121.
Blaalid, R., T. Carlsen, S. Kumar, R. Halvorsen, K. I. Ugland, G. Fontana, and H. Kauserud. 2012. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Molecular Ecology 21: 1897-1908.
Bradley, B., M. Stiller, D. M. Doran-Sheehy, T. Harris, C. A. Chapman, L. Vigilant, and H. Poinar. 2007. Plant DNA sequences from feces: Potential means for assessing diets of wild primates. American Journal of Primatology 69: 699-705.
Brondizio, E. S., J. Settele, S. Diaz, and H. T., Ngo. 2019. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). IPBES secretariat, Bonn, Germany. 1148p.
Buee, M., M. Reich, C. Murat, E. Morin, R. H. Nilsson, S. Uroz, and F. Martin. 2009. 454 Pyrosequencing analysis of forest soils reveal an unexpectedly high fungal diversity. New Phytologist 184: 449-456.
Buxton, A. S., J. J. Groombridge, and R. A. Griffiths. 2017. Is the detection of aquatic environmental DNA influenced by substrate type? PLoS One 12: e0183371.
Capo, E., C. Gigue-Covex, A. Rouillard, K. Nota, P. D. Heintzman, A. Vuillemin, D. Ariztegui, et al. 2021. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4: 6.
Carvalho-Silva, M., L. H. Rosa, O. H. B. Pinto, T. H. da Silva, D. K. Henriques, P. Convey, and P. E. A. S. Camara. 2021. Exploring the plant environmental DNA diversity in soil from two sites on Deception Island (Antarctica, South Shetland Islands) using metabarcoding. Antarctic Science 35: 469-478.
Castro, L. R., R. S. Meyer, B. Shapiro, S. Shirazi, S. Cutler, A. M. Lagos, and S. Y. Quiroga. 2021. Metabarcoding meiofauna biodiversity assessment in four beaches of Northern Colombia: Effects of sampling protocols and primer choice. Hydrobiologia 848: 3407-3426.
CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences, USA 106: 12794-12797.
Chase, D. M., L. M. Kuehne, J. D. Olden, and C. O. Ostberg. 2020. Development of a quantitative PCR assay for detecting Egeria densa in environmental DNA samples. Conservation Genetics Resources 12: 545-548.
Chen, S., H. Yao, J. Han, C. Liu, J. Song, L. Shi, Y. Zhu, et al. 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5: e8613.
Chui, S. X., A. Keller, and S. D. Leonhardt. 2021. Functional resin use in solitary bees. Ecological Entomology 47: 115-136.
Coghlan, S. A., A. B. A Shafer, and J. R. Freeland. 2020. Development of an environmental DNA metabarcoding assay for aquatic vascular plant communities. Environmental DNA 3: 372-387.
Cowart, D. A., M. Matabos, M. I. Brandt, J. Marticorena, and J. Sarrazin. 2020. Exploring environmental DNA (eDNA) to assess biodiversity of hard substratum faunal communities on the Lucky Strike Vent Field (Mid-Atlantic Ridge) and investigate recolonization dynamics after an induced disturbance. Frontiers in Marine Science 6: 783.
Cowart, D. A., D. R. Murphy, and C. H. C. Cheng. 2018. Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula. Marine Genomics 37: 148-160.
Curtis, A. N., J. S. Tiemann, S. A. Douglass, M. A. Davis, and E. R. Larson. 2021. High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Diversity and Distributions 27: 1918-1931.
de Sousa, L. L., S. M. Silva, and R. Xavier. 2019. DNA metabarcoding in diet studies: unveiling ecological aspects in aquatic and terrestrial ecosystems. Environmental DNA 1: 199-214.
de Souza, L. S., J. C. Godwin, M. A. Renshaw, and E. R. Larson. 2016. Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms. PLoS One 11: e0165273.
de Vere, N., L. E. Jones, T. Gilmore, J. Moscrop, A. Lowe, D. Smith, M. J. Hegarty, et al. 2017. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Scientific Reports 7: 42838.
Deiner, K., E. A. Fronhofer, E. Machler, J. Walser, and F. Altermatt. 2016. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nature Communications 7: 12544.
Deiner, K., J. Walser, E. Machler, and F. Altermatt. 2015. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation 183: 53-63.
Deiner, K., H. Yamanaka, and L. Bernatchez. 2021. The future of biodiversity monitoring and conservation utilizing environmental DNA. Environmental DNA 3: 3-7.
DiBattista, J. D., J. D. Reimer, M. Stat, G. D. Masucci, P. Biondi, M. De Brauwer, and S. P. Wilkinson. 2020. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Scientific Reports 10: 8365.
Doi, H., Y. Akamatsu, M. Goto, R. Inui, T. Komuro, M. Nagano, and T. Minamoto. 2021. Broad-scale detection of environmental DNA for an invasive macrophyte and the relationship between DNA concentration and coverage in rivers. Biological Invasions 23: 507-520.
Edwards, M. E., I. Greve Alsos, N. Yoccoz, E. Coissac, T. Goslar, L. Gielly, J. Haile, et al. 2018. Metabarcoding of modern soil DNA give a highly local vegetation signal in Svalbard tundra. Holocene 28: 2006-2016.
Estrada, O., J. Breen, S. M. Richards, and A. Cooper. 2018. Ancient plant DNA in the genomic era. Nature Plants 4: 394-396.
Evans, D. M., and J. J. N. Kitson. 2020. Molecular ecology as a tool for understanding pollination and other plant-insect interactions. Current Opinion in Insect Science 38: 2020.
Evans, D. M., and J. J. N. Kitson. 2016. Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Functional Ecology 30: 1904-1916.
Fahner, N., S. Shokralla, D. Baird, and M. Hajibabaei. 2016. Large-scale monitoring of plants through environmental DNA metabarcoding of soil: recovery, resolution, and annotation of four DNA markers. PLoS One 11: e015750.
Farrell, J. A., L. Whitmore, and D. J. Duffy. 2021. The promise and pitfalls of environmental DNA and RNA approaches for the monitoring of human and animal pathogens from aquatic sources. BioScience 71: 609-625.
Ficetola, G. F., C. Miaud, F. Pompanon, and P. Taberlet. 2008. Species detection using environmental DNA from water samples. Biology Letters 4: 423-425.
Folloni, S., D. Kagkli, B. Rajcevic, N. C. C. Guimaraes, B. Van Droogenbroeck, F. H. Valicente, G. V. Eede, and M. V. Bulcke. 2012. Detection of airborne genetically modified maize pollen by real-time PCR. Molecular Ecology Resources 12: 810-821.
Foscari, A., G. Alberti, M. Zotti, and G. Incerti. 2022. Species-specific DNA distribution in spruce-beech forest soil. Environmental DNA 4: 1120-1135.
Flojgaard, C., T. G. Froslev, A. K. Brunbjerg, H. H. Bruun, J. Moeslund, A. J. Hansen, and R. Ejenaes. 2019. Predicting provenance of forensic soil samples: linking soil to ecological habitats by metabarcoding and supervised classification. PLoS One 14: e0202844.
Foley, B. P., M. C. Hansson, D. P. Kourkoumelis, and T. A. Theodoulou. 2012. Aspects of ancient Greek trade re-evaulated with amphora DNA evidence. Journal of Archaeological Science 29: 389-398.
Foucher, A., O. Evrand, G. F. Ficetola, L. Gielly, J. Poulain, C. Giguet-Covex, J. P. Laceby, et al. 2020. Persistence of environmental DNA in cultivated soils: implication of this memory effect for reconstructing the dynamics of land use and cover changes. Scientific Reports 10: 10502.
Foster, N. R., K. V. Dijk, E. Biffin, J. M. Young, V. A. Thomson, B. M. Gillanders, A. R. Jones, and M. Waycott. 2021. A multi-gene region targeted capture approach to detect plant DNA in environmental samples: a case study from coastal environments. Frontiers in Ecology and Evolution 9: 735744.
Frankl, A., O. Evrard, E. Cammeraat, B. Tytgat, E. Verleyen, and A. Stokes. 2022. Tracing hotspots of soil erosion in high mountain environments: How forensic science based on plant eDNA can lead the way. An opinion. Plant and Soil 476: 729-742.
Fujiwara, A., S. Matsuhashi, H. Doi, S. Yamamoto, and T. Minamoto. 2016. Use of environmental DNA to survey the distribution of an invasive submerged plant in ponds. Freshwater Science 35: 748-754.
Galliot, J., D. Brunel, A. Berard, A. Chauveau, A. Blanchetete, L. Lanore, and A. Farruggia. 2017. Investigating a flower-insect forager network in a mountain grassland community using pollen DNA barcoding. Journal of Insect Conservation 21: 827-837.
Gantz, C. A., M. A. Renshaw, D. Erickson, D. M. Lodge, and S. P. Egan. 2018. Environmental DNA detection of aquatic invasive plants in lab mesocosm and natural field conditions. Biological Invasions 20: 2535-2552.
Garrard, G. E., S. A. Bekessy, M. A. McCarthym, and B. A. Wintle. 2008. When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology 33: 986-998.
Giguet-Covex, C., J. Pansu, F. Arnaud, P. Rey, C. Griggo, L. Gielly, and I. Domaizon. 2014. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nature Communications 5: 3211.
Goldberg, C. S., C. R. Turner, K. Deiner, K. E. Klymus, P. F. Thomsen, M. A. Murphy, S. F. Spear, et al. 2016. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution 7: 1299-1307.
Gomez, N. G., D. H. Sørensen, P. Y. S. Chua, and L. Sigsgaard. 2022. Assessing flower-visiting arthropod diversity in apple orchards through metabarcoding of environmental DNA from flowers and visual census. Environmental DNA 5: 117-131.
Goricki, S., D. Stankovic, A. Snoj, M. Kuntner, W. R. Jeffery, P. Trontelij, M. Pavicevic, et al. 2017. Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus. Scientific Reports 7: 45054.
Gould, B. A., B. Leon, A. M. Buffen, L. G. Thompson. 2010. Evidence of a high-Andean, mid-Holocene plant community: An ancient DNA analysis of glacially preserved remains. American Journal of Botany 97: 1579-1584.
Gugerli, F., N. Alvarez, and W. Tinner. 2013. A deep dig-hindsight on Holocene vegetation composition from ancient environmental DNA. Molecular Ecology 22: 3433-3436.
Haile, J., R. Holdaway, K. Oliver, M. Bunce, M. T. P. Gilbert, R. Nielsen, K. Munch, et al. 2007. Ancient DNA chronology within sediment deposits: Are paleobiological reconstructions possible and is DNA leaching a factor? Molecular Biology and Evolution 24: 982-989.
Haouchar, D., J. Haile, M. C. McDowell, D. C. Murray, N. E. White, R. J. N. Allcock, M. J. Phillips, et al. 2014. Thorough assessment of DNA preservation from fossil bone and sediments excavated form a late Pleistocene-Holocene cave deposit on Kangaroo Island, South Australia. Quaternary Science Reviews 84: 56-64.
Harper, L. R., M. L. Niemiller, J. B. Benito, L. E. Paddock, E. Knittle, B. Molano-Flores, and M. A. Davis. 2022. BeeDNA: Microfluidic environmental DNA metabarcoding as a tool for connecting plant and pollinator communities. Environmental DNA 5: 191-211.
Harrer, L. E. F., and T. Levi. 2018. The primacy of bears as seed dispersers in salmon-bearing ecosystems. Ecosphere 9: e02076.
Harrison, J. B., J. M. Sunday, and S. M. Rogers. 2019. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society, B, Biological Sciences 286: 2019140.
Hartvig, I., C. Kosawang, E. D. Kjaer, and L. R. Nielsen. 2021. Detecting rare terrestrial orchids and associated plant communities from soil samples with eDNA methods. Biodiversity and Conservation 30: 3879-3901.
Hawkins, J., N. de Vere, A. Griffith, C. R. Ford, J. Allainguillaume, M. J. Hegarty, L. Baillie, and B. Adams-Groom. 2015. Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS ONE 10: e0134735.
Hempel, C. A., B. Peinert, A. J. Beermann, V. Elbrecht, J. N. Macher, T. H. Macher, G. Jacobs, and F. Leese. 2020. Using environmental DNA to monitor the reintroduction success of the Rhine sculpin (Cottus rhenanus) in a restored stream. Frontiers in Ecology and Evolution 8: 81.
Herrick, J. E., J. W. Van Zee, S. E. McCord, E. M. Courtright, J. W. Karl, and L. M. Burkett. 2005. Monitoring manual for grassland, shrubland and savanna ecosystems, vol. I, Quick start. University of Arizona Press, Tucson, AZ, USA.
Hofreiter, M., J. I. Mead, P. Martin, H. N. Poinar. 2003. Molecular caving. Current Biology 16: 693-695.
Hoss, M., M. Kohn, S. Paabo, F. Knauer, and W. Schroder. 1992. Excrement analysis by PCR. Nature 259: 199.
Hutchins, P. R., L. N. Simantel, and A. J. Sepulveda. 2021. Time to get real with qPCR controls: the frequency of sample contamination and the informative power of negative controls in environmental DNA studies. Molecular Ecology Resources 22: 1319-1329.
Jain, S., F. Jesus, G. M. Marchioro, and D. de Araujo. 2013. Extraction of DNA from honey and its amplification by PCR for botanical identification. Food Science and Technology 33: 753-756.
Jerde, C. L., A. R. Mahon, W. L. Chadderton, and D. M. Lodge. 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters 4: 150-157.
Jerde, C. L., A. R. Mahon, T. Campbell, M. E. McElroy, K. Pin, J. N. Childress, M. Armstrong, et al. 2021. Are genetic reference libraries sufficient for environmental DNA metabarcoding of Mekong River Basin fish? Water 13: 1767.
Jo, T., H. Murakami, S. Yamamoto, R. Masuda, T. Minamoto. 2019. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecology and Evolution 9: 1135-1146.
Johnson, M. D., R. D. Cox, and M. A. Barnes. 2019a. Analyzing airborne environmental DNA: A comparison of extraction methods, primer type, and trap type on the ability to detect airborne eDNA from terrestrial plant communities. Environmental DNA 1: 176-185.
Johnson, M. D., R. D. Cox, and M. A. Barnes. 2019b. The detection of a non-anemophilous plant species using airborne eDNA. PLoS One 14: e0225262.
Johnson, M. D., R. D. Cox, B. A. Grisham, D. Lucia, and M. A. Barnes. 2021a. Airborne eDNA reflects human activity and seasonal changes on a landscape scale. Frontiers in Environmental Science 8: 563431.
Johnson, M. D., M. Fokar, R. D. Cox, and M. A. Barnes. 2021b. Airborne environmental DNA metabarcoding detects, more diversity, with less sampling effort, than a traditional plant community survey. BMC Ecology and Evolution 21: 218.
Johnson, M. D., A. D. Katz, M. A. Davis, D. Edlund, S. Tomczyk, B. Molano-Flores, T. Wilder, and J. H. Sperry. 2023. Environmental DNA metabarcoding from flowers reveals arthropod pollinators, plant pests, parasites, and predator-prey interactions. Environmental DNA 5: in press.
Jørgensen, T., J. Haile, P. Möller, A. Andreev, S. Boessenkool, M. Rasmussen, F. Kienast, et al. 2011. A comparative study of ancient sedimentary DNA, pollen, and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability. Molecular Ecology 21: 1989-2003.
Keller, A., N. Danner, G. Grimmer, M. Ankenbran, K. van der Ohe, S. Rost, S. Hartel, and I. Steffan-Dewenter. 2015. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biology 17: 558-566.
Kessler, E. J., K. T. Ash, S. N. Barratt, E. R. Larson, and M. A. Davis. 2020. Radiotelemetry reveals effects of upstream biomass and UV exposure on environmental DNA occupancy and detection for a large freshwater turtle. Environmental DNA 2: 13-23.
Kjaer, K. H., M. W. Pedersen, B. De Sanctis, B. De Cashan, T. S. Korneliussen, C. S. Michelsen, K. K. Sand, et al. 2022. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature 612: 283-291.
Klepke, M. J., E. E. Sigsgaard, M. R. Jensen, K. Olsen, and P. F. Thomsen. 2022. Accumulation and diversity of airborne, eukaryotic environmental DNA. Environmental DNA 4: 1323-1339.
Klymus, K. E., C. A. Richter, N. Thompson, and J. E. Hinck. 2017. Metabarcoding of environmental DNA samples to explore the use of uranium mine containment ponds as a water source for wildlife. Diversity 9: 54.
Kodama, T., S. Miyazono, Y. Akamatsu, S. Tsuji, and R. Nakao. 2022. Abundance estimation of riverine macrophyte Egeria densa using environmental DNA: Effects of sampling season and location. Limnology 23: 299-308.
Korpelainen, H., and M. Pietilainen. 2017. Biodiversity of pollen in indoor air samples as revealed by DNA metabarcoding. Nordic Journal of Botany 35: 602-608.
Kraaijeveld, K., L. A. Weger, M. V. Garcia, H. Buermans, J. Frank, P. S. Hiemstra, and J. T. Dunnen. 2015. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Molecular Ecology Resources 15: 8-16.
Kudoh, A., T. Minamoto, and S. Yamamoto. 2020. Detection of herbivory: eDNA detection from feeding marks on leaves. Environmental DNA 2: 627-634.
Kuehne, L. M., C. O. Ostberg, D. M. Chase, J. J. Duda, and J. D. Olden. 2020. Use of environmental DNA to detect the invasive aquatic plants Myriophyllum spicatum and Egeria densa in lakes. Freshwater Science 39: 521-533.
Lacoursière-Roussel, A., and K. Deiner. 2021. Environmental DNA is not the tool by itself. Journal of Fish Biology 98: 383-386.
Laube, I., H. Hird, P. Brodmann, S. Ullmann, M. Schone-Michling, J. Chisholm, and H. Broll. 2010. Development of primer and probe sets for the detection of plant species in honey. Food Chemistry 118: 979-986.
Leese, F., M. Sander, D. Buchner, V. Elbrecht, P. Haase, and V. M. A. Zizka. 2020. Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environmental DNA 3: 261-276.
Lennartz, C., J. Kurucar, S. Coppola, J. Crager, J., Bobrow, L. Bortolin, and J. Comolli. 2021. Geographic source estimation using airborne plant environmental DNA in dust. Scientific Reports 15: 16238.
Lin, M., A. L. Simons, R. J. Harrigan, E. E. Curd, F. D. Schneider, D. V. Ruiz-Ramos, Z. Gold, et al. 2021. Landscape analyses using eDNA metabarcoding and Earth observation predict community biodiversity in California. Ecological Applications 31: e02379.
Little, D. P. 2013. A DNA mini-barcode for land plants. Molecular Ecology Resources 14: 437-446.
Littlefair, J. E., A. Zander, C. D. S. Costa, and E. L. Clare. 2018. DNA metabarcoding reveals changes in the contents of carnivorous plants along an elevation gradient. Molecular Ecology 28: 281-292.
Lyman, J. A., D. E. Sanchez, S. N. Hershauer, C. J. Sobek, C. L. Chambers, J. Zahratka, F. M. Walker. 2022. Mammalian eDNA on herbaceous vegetation? Validating a qPCR assay for detection of an endangered rodent. Environmental DNA 4: 1187-1197.
Marinich, A. K. 2017. Evaluating environmental DNA (eDNA) detection of invasive water soldier (Stratiotes aloides) (Thesis). Peterborough, ON: Trent University.
Marshall, N. T., and C. A. Stepien. 2019. Invasion genetics from eDNA and thousands of larvae: a targeted metabarcoding assay that distinguishes species and population variation of zebra and quagga mussels. Ecology and Evolution 9: 3515-3538.
Marshall, N. T., H. A. Vanderploeg, and S. R. Chaganti. 2021. Environmental (e)RNA advances the reliability of eDNA by predicting its age. Scientific Reports 11: 2769.
Martínez-García, L. B., S. J. Richardson, J. M. Tylianakis, D. A. Peltzer, and I. A. Dickie. 2014. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytologist 205: 1565-1576.
Matisoo-Smith, E., R. K. Welikala, G. Tannock, P. I. Chester, D. T. Feek, and J. R. Flenley. 2008. Recovery of DNA and pollen from New Zealand lake sediments. Quaternary International 184: 139-149.
Matsuhashi, S., H. Doi, A. Fujiwara, S. Watanabe, and T. Minamoto. 2016. Evaluation of the environmental DNA method for estimating distribution and biomass of submerged aquatic plants. PLoS One 11: e0156217.
Matsuhashi, S., T. Minamoto, and H. Doi. 2019. Seasonal change in environmental DNA concentration of a submerged aquatic plant species. Freshwater Science 38: 654-660.
Meyer, R. S., M. M. Ramos, M. Lin, T. M. Schweizer, Z. Gold, D. R. Ramos, S. Shirazi, et al. 2021. The CALeDNA program: Citizen scientists and researchers inventory California's biodiversity. California Agriculture 75: 20-32.
Miller, K. E., A. Polaszek, and D. M. Evans. 2021. A dearth of data: fitting parasitoids into ecological networks. Trends in Parasitology 37: 863-874.
Miyazono, S., T. Kodama, Y. Akamatsu, R. Nakao, and M. Saito. 2020. Application of environmental DNA methods for the detection and abundance estimation of invasive aquatic plant Egeria densa in lotic habitats. Limnology 22: 81-87.
Mohanty, R., M. Buchheim, and E. Levetin. 2017. Molecular approaches for the analysis of airborne pollen a case study of Juniperus pollen. Annals of Allergy, Asthma, and Immunology 118: 204-211.
Monge, O., D. Dumas, and I. Baus. 2020. Environmental DNA from avian residual saliva in fruits and its potential uses in population genetics. Conservation Genetics Resources 12: 131-139.
Murchie, T. J., M. Kuch, A. T. Duggan, M. L. Ledger, K. Roche, J. Klunk, E. Karpinski, et al. 2020. Optimizing extraction and targeted capture of ancient environmental DNA for reconstruction past environments using the PalaeoChip Arctic-1.0 bait-set. Quaternary Research 99: 305-328.
Nichols, P. K., and P. B. Marko. 2019. Rapid assessment of coral cover from environmental DNA in Hawaii. Environmental DNA 1: 40-53.
Nichols, R. V., C. Vollmers, L. A. Newsom, Y. Wang, P. D. Heintzman, M. Leighton, R. E. Green, and B. Shapiro. 2018. Minimizing polymerase biases in metabarcoding. Molecular Ecology Resources 18: 927-939.
Nogueira, J., H. Evangelista, C. M. Valeriano, A. Sifeddine, C. Neto, G. Vaz, L. S. Moreira, et al. 2021. Dust arriving in the Amazon basin over the past 7,500 years came from diverse sources. Communications Earth and Environment 2: 5.
Osathanunkul, M., N. Sawongta, W. Pheera, N. Pechlivanis, F. Psomopoulos, and P. Madesis. 2021. Exploring plant diversity through soil DNA in Thai national parks for influencing land reform and agriculture planning. PeerJ 9: e11753.
Palacios Mejia, M., E. Curd, K. Edalati, M. A. Renshaw, R. Dunn, D. Potter, N. Fraga, et al. 2021. The utility of environmental DNA from sediment and water samples for recovery of observed plant and animal species from four Mojave Desert springs. Environmental DNA 3: 214-230.
Parducci, L., K. D. Bennett, G. F. Ficetola, I. G. Alsos, Y. Suyama, J. R. Wood, and M. W. Pedersen. 2017. Ancient plant DNA in lake sediments. New Phytologist 214: 924-942.
Parducci, L., I. Greve Alsos, P. Unneberg, M. W. Pedersen, L. Han, Y. Lammers, J. Sakari Salonen, et al. 2019. Shotgun environmental DNA, pollen, and macrofossil analysis of late glacial lake sediments from southern Sweden. Frontiers in Ecology and Evolution 7: 189.
Parducci, L., T. Jørgensen, M. M. Tollefsrud, E. Elverland, T. Alm, S. L. Fontana, K. D. Bennett, et al. 2012. Glacial survival of boreal trees in northern Scandinavia. Science 335: 1083-1086.
Parducci, L., I. Matetovici, S. L. Fontana, K. D. Bennett, Y. Suyama, J. Haile, K. H. Kjaer, et al. 2013. Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia. Molecular Ecology 22: 3511-3524.
Parducci, L., Y. Suyama, M. Lascoux, and K. D. Bennett. 2005. Ancient DNA from pollen: a genetic record of population history in Scots pine. Molecular Ecology 14: 2873-2882.
Parsons, K. M., M. Everett, M. Dahlheim, and L. Park. 2018. Water, water everywhere: Environmental DNA can unlock population structure in elusive marine species. Royal Society Open Science 5: 180537.
Pawlowska, J., F. Lejzerowicz, P. Esling, W. Szczucinski, M. Zajaczkowski, and J. Pawlowski. 2014. Ancient DNA sheds new light on the Svalbard foraminiferal fossil record of the last millennium. Gebiology 12: 277-288.
Pawlowski, J., L. Apotheloz-Perret-Gentil, and F. Altermatt. 2020. Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology 29: 4258-4264.
Pedersen, M. W., A. Ginolhacc, L. Orlando, J. Olsen, K. Andersen, J. Holm, S. Funder, et al. 2013. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa. Quaternary Science Reviews 75: 161-168.
Pedersen, M. W., S. Overballe-Petersen, L. Ermini, C. D. Sarkissian, J. Haile, M. Hellstrom, J. Spens, et al. 2015. Ancient and modern environmental DNA. Philosophical Transactions of the Royal Society, B, Biological Sciences 370: 20130383.
Pedersen, M. W., A. Ruter, C. Schweger, H. Friebe, R. A. Staff, K. K. Kjeldsen, M. L. Z. Mendoza, et al. 2016. Postglacial viability and colonization in North America's ice-free corridor. Nature 537: 45-49.
Poinar, H. N., M. Kuch, K. D. Sobolik, I. Barnes, A. B. Stankiewicz, T. Kuder, W. G. Spaulding, et al. 2001. A molecular analysis of dietary diversity for three archaic Native Americans. Anthropology 98: 4317-4322.
Pornon, A., N. Escaravage, M. Burrus, H. Holota, A. Khimoun, J. Mariette, C. Pellizzari, et al. 2016. Using metabarcoding to reveal and quantify plant-pollinator interactions. Scientific Reports 6: 27282.
Pote, J., R. Ackermann, and W. Wildi. 2009. Plant leaf mass loss and DNA release in freshwater sediments. Ecotoxicology and Environmental Safety 72: 1378-1383.
Prieto, A. E., L. Hardion, and J. Beisel. 2021. Designing robust DNA barcode libraries for metabarcoding of freshwater plants by integrating herbarium collections and contemporary floristic inventories. ARPHA Conference Abstracts 4: e64713.
Pyle, M. M., and R. P. Adams. 1989. In situ preservation of DNA in plant specimens. Taxon 38: 576-581.
Raposo M. A., G. M. Kirwan, A. C. Calijorne Lourenco, G. Sobral, F. A. Bockmann, and R. Stopiglia. 2021. On the notions of taxonomic ‘impediment’, ‘gap’, ‘inflation’, and ‘anarchy’, and their effects on the field of conservation. Systematics and Biodiversity 19: 296-311.
Rasmussen, A. J., M. Nielsen, S. S. Mak, J. Doring, F. Klincke, S. Gopalakrishnan, R. Dunn, et al. 2021. eDNA-based biomonitoring at an experimental German vineyard to characterize how management regimes shape ecosystem diversity. Environmental DNA 3: 70-82.
Rawlence, N. J., D. J. Lowe, J. R. Wood, J. M. Young, G. J. Churchman, Y. Huang, and A. Cooper. 2014. Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects. Journal of Quaternary Science 29: 610-626.
Ribani, A., V. J. Utzeri, V. Taurisano, and L. Fontanesi. 2020. Honey as a source of environmental DNA for the detection and monitoring of honey bee pathogens and parasites. Veterinary Sciences 7: 113.
Richardson, R. T., C. Lin, J. Quijia, N. S. Riusech, K. Goodell, and R. M. Johnson. 2015. Rank-based characterization of pollen assemblages collected by honey bees using a multi-locus metabarcoding approach. Applications in Plant Sciences 3: 1500043.
Rijal, D. P., P. D. Heintzman, Y. Lammers, N. G. Yoccoz, K. E. Lorberau, I. Pitelkova, T. Goslar, et al. 2021. Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Science Advances 7: eabf9557.
Ruppert, K. M., R. J. Kline, and M. S. Rahman. 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation 17: e00547.
Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlowm, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, et al. 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770-1774.
Schenekar, T. 2022. The current state of eDNA research in freshwater ecosystems: Are we shifting from the developmental phase to standard application in biomonitoring? Hydrobiologia https://doi.org/10.1007/s10750-022-04891-z.
Scriver, M., A. Marinich, C. Wilson, and J. Freeland. 2015. Development of species-specific environmental DNA markers for invasive aquatic plants. Aquatic Botany 122: 27-31.
Sepulveda, A. J., H. R. Patrick, M. Forstchen, M. McKeefry, and A. M. Swigris. 2020. The elephant in the lab (and field): contamination in aquatic environmental DNA studies. Frontiers in Ecology and Evolution 8: 609973.
Shackleton, M. E., G. N. Rees, G. Watson, C. Campbell, and D. Nielsen. 2019. Environmental DNA reveals landscape mosaic of wetland plant communities. Global Ecology and Conservation 19: e00689.
Shirazi, S., R. S. Meyer, and B. Shapiro. 2021. Revisiting the effect of PCR replication and sequencing depth on biodiversity metrics in environmental DNA metabarcoding. Ecology and Evolution 11: 15766-15779.
Sickel, W., M. J. Ankenbrand, G. Grimmer, A. Holzschuh, S. Hartel, J. Lanzen I. Steffan-Dewenter, and A. Keller. 2015. Increased efficiency in identifying mixed pollen samples by metabarcoding with a dual-indexing approach. BMC Ecology 15: 20.
Sigsgaard, E. E., M. D. Jensen, I. E. Winkelmann, P. R. Moller, M. M. Hansen, and P. F. Thomsen. 2019. Population-level inferences from environmental DNA-current status and future perspectives. Evolutionary Applications 13: 245-262.
Sigsgaard, E. E., I. B. Nielsen, S. S. Bach, E. D. Lorenzen, D. P. Robinson, S. W. Knudsen, M. W. Pedersen, et al. 2016. Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nature Ecology and Evolution 1: 0004.
Slon, V., C. Hopfe, C. L. Weib, F. Mafessoni, M. Rasilla, C. Lalueza-Fox, A. Rosas, et al. 2017. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356: 605-608.
Stahlschmidt, M. C., T. C. Collin, D. M. Fernandes, G. Bar-Oz, A. Belfer-Cohen, Z. Gao, N. Jakeli, et al. 2019. Ancient mammalian and plant DNA from late Quaternary stalagmite layers at Solkota Cave, Georgia. Scientific Reports 9: 6628.
Stat, M., M. J. Huggett, R. Bernasconi, J. D. BiBattista, T. E. Berry, S. J. Newman, E. S. Harvey, and M. Bunce. 2017. Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment. Scientific Reports 7: 12240.
Stepien, C. A., M. R. Snyder, and A. E. Elz. 2019. Invasion genetics of the silver carp Hypophthalmichthys molitrix across North America: Differentiation of fronts, introgression, and eDNA metabarcode detection. PLoS One 14: e0203012.
Stoeckle, M. Y., M. D. Mishum, and Z. Charlop-Powers. 2020. Improved Environmental DNA reference library detects overlooked marine fishes in New Jersey, United States. Frontiers in Marine Science 7: 226.
Strickler, K. M., A. K. Fremier, and C. S. Goldberg. 2015. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation 183: 85-92.
Sun, Z., M. Majaneva, E. Sokolova, S. Rauch, S. Meland, and T. Ekrem. 2019. DNA metabarcoding adds valuable information for management of biodiversity in roadside stormwater ponds. Ecology and Evolution 9: 9712-9722.
Sutherland, W. J., P. W. Atkinson, S. H. M. Butchart, M. Capaja, L. V. Dicks, E. Fleishman, K. J. Gaston, et al. 2022. A horizon scan of global biological conservation issues for 2022. Trends in Ecology and Evolution 37: 95-104.
Taberlet, P., A. Bonin, L. Zinger, and E. Coissac. 2018. Environmental DNA for biodiversity research and monitoring. Oxford University Press, Oxford, UK.
Taberlet, P., E. Coissac, F. Pompanon, L. Gielly, C. Miquel, A. Valentini, T. Vermat, et al. 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research 35: e14.
Thomsen, P. F., J. Kielgast, L. L. Iverson, P. R. Moller, M. Rasmussen, and E. Willerslev. 2012. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One 7: e41732.
Thomsen, P. F., and E. E. Sigsgaard. 2019. Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods. Ecology and Evolution 9: 1665-1679.
Thomsen, P. F., and E. Willerslev. 2015. Environmental DNA-an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4-18.
Tsukamoto, Y., S. Yonezawa, N. Katayama, and Y. Isagi. 2021. Detection of endangered aquatic plants in rapid streams using environmental DNA. Frontiers in Ecology and Evolution 8: 622291.
Tsuri, K., S. Ikeda, T. Hirohara, Y. Shimada, T. Minamoto, and H. Yamanaka. 2020. Messenger RNA typing of environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates. Environmental DNA 3: 14-21.
Turon, X., A. Antich, C. Palacin, K. Praebel, and O. S. Wangensteen. 2019. From metabarcoding to metaphylogeography: Separating the wheat from the chaff. Ecological Application 30: e02036.
Uchii, K., H. Doi, and T. Minamoto. 2016. A novel environmental DNA approach to quantify the cryptic invasion of non-native genotypes. Molecular Ecology Resources 16: 415-422.
Valentin, R. E., D. M. Fonseca S. Gable K. E. Kyle, G. C. Hamilton, A. L. Nielsen, and J. L. Lockwood. 2020. Moving eDNA surveys onto land: Strategies for active eDNA aggregation to detect invasive forest insects. Molecular Ecology Resources 20: 746-755.
Valentini, A., C. Miquel, and P. Taberlet. 2010. DNA barcoding for honey biodiversity. Diversity 2: 610-617.,.
Walters, C. J. 1986. Adaptive management of renewable resources. McMillan, New York, New York, USA.
Wang, B., Y. Li, G. Zhang, J. Yang, C. Deng, H. Hu, L. Zhang, X. Xu, and C. Zhou. 2022. Seasonal variations in the plant diet of the Chinese Monal revealed by fecal DNA metabarcoding analysis. Avian Research 13: 100034.
Weyrich, L. S., K. Dobney, and A. Copper. 2015. Ancient DNA analysis of dental calculus. Journal of Human Evolution 79: 119-124.
Wheeler, Q. D., and E. O. Wilson. 2004. Taxonomy: Impediment or expedient? Science 303: 285.
Willerslev, E., E. Cappellni, W. Boomsma, R. Nielsen, M. B. Hebsgaard, T. B. Brand, M. Hofreiter, et al. 2007. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317: 111-114.
Willerslev, E., J. Davison, M. Moora, M Zobel, E. Coissac, M. E. Edwards, E. D. Lorenzen, et al. 2014. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506: 47-51.
Willerslev, E., A. Hansen, J. Binladen, T. B. Brand, M. Thomas, P. Gilbert, B. Shapiro, et al. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300: 791-795.
Wilsey, B. J., and C. Potvin. 2000. Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81: 2000.
Xie, Y., X. Zhang, J. Yang, S. Kim, S. Hong, J. P. Giesy, U. H. Yim, et al. 2018. eDNA-based bioassessment of coastal sediments impacts by an oil spill. Environmental Pollution 238: 739-748.
Yates, M. C., A. M. Derry, and M. E. Cristescu. 2021. Environmental RNA: A revolution in ecological resolution? Trends in Ecology and Evolution 36: 601-609.
Yoccoz, N. G., K. A. Brathen, L. Gielly, J. Haile, M. E. Edwards, T. Goslar, H. V. Stedingk, et al. 2012. DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology 21: 3647-3655.
Yuan, S., S. Chin, C. Lee, and F. Chen. 2018. Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Botanical Studies 59: 1.
Zhu, B. 2006. Degradation of plasmid and plant DNA in water microcosms monitored by natural transformation and real-time polymerase chain reaction (PCR). Water Research 40: 3231-3238.
Zulkefli, N. S., K. H. Kim, and S. Hwang. 2019. Effects of microbial activity and environmental parameters on the degradation of extracellular environmental DNA from a eutrophic lake. International Journal of Environmental Research and Public Health 16: 3339.
فهرسة مساهمة: Keywords: ancient botanical eDNA; aquatic botanical eDNA; botanical eDNA; eDNA; organism derived botanical eDNA; review
المشرفين على المادة: 0 (DNA, Environmental)
تواريخ الأحداث: Date Created: 20230112 Date Completed: 20230227 Latest Revision: 20230227
رمز التحديث: 20230227
DOI: 10.1002/ajb2.16120
PMID: 36632660
قاعدة البيانات: MEDLINE
الوصف
تدمد:1537-2197
DOI:10.1002/ajb2.16120