دورية أكاديمية

Targeting TBK1 to overcome resistance to cancer immunotherapy.

التفاصيل البيبلوغرافية
العنوان: Targeting TBK1 to overcome resistance to cancer immunotherapy.
المؤلفون: Sun Y; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Revach OY; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Anderson S; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Kessler EA; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Wolfe CH; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Jenney A; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA., Mills CE; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA., Robitschek EJ; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Davis TGR; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Kim S; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Fu A; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Ma X; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Gwee J; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Tiwari P; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Du PP; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Sindurakar P; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Tian J; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Mehta A; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA., Schneider AM; Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA., Yizhak K; Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Institute of Technology, Technion, Haifa, Israel., Sade-Feldman M; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA., LaSalle T; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Sharova T; Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA., Xie H; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Liu S; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA., Michaud WA; Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA., Saad-Beretta R; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Yates KB; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Iracheta-Vellve A; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Spetz JKE; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA.; Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA.; John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA., Qin X; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA.; Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA.; John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA., Sarosiek KA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA.; Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA.; John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA., Zhang G; Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.; Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.; Preston Robert Tisch Brain Tumor Center, Department of Pathology, Duke University School of Medicine, Durham, NC, USA., Kim JW; Moores Cancer Center, UC San Diego, La Jolla, CA, USA.; Center for Novel Therapeutics, UC San Diego, La Jolla, CA, USA.; Department of Medicine, UC San Diego, La Jolla, CA, USA., Su MY; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA., Cicerchia AM; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Rasmussen MQ; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Klempner SJ; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Juric D; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Pai SI; Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.; Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA., Miller DM; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA., Giobbie-Hurder A; Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA., Chen JH; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA., Pelka K; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Frederick DT; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Stinson S; Gilead Sciences, Foster City, CA, USA., Ivanova E; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA., Aref AR; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA.; Xsphera Biosciences, Boston, MA, USA., Paweletz CP; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA., Barbie DA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA., Sen DR; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Fisher DE; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA., Corcoran RB; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Hacohen N; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Sorger PK; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA., Flaherty KT; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Boland GM; Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA., Manguso RT; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Jenkins RW; Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. rjenkins@mgh.harvard.edu.; Broad Institute of MIT and Harvard, Cambridge, MA, USA. rjenkins@mgh.harvard.edu.; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA. rjenkins@mgh.harvard.edu.
المصدر: Nature [Nature] 2023 Mar; Vol. 615 (7950), pp. 158-167. Date of Electronic Publication: 2023 Jan 12.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Immune Evasion*/genetics , Immune Evasion*/immunology , Immunotherapy*/methods , Protein Serine-Threonine Kinases*/antagonists & inhibitors , Protein Serine-Threonine Kinases*/genetics , Drug Resistance, Neoplasm*, Humans ; Programmed Cell Death 1 Receptor/antagonists & inhibitors ; Organoids ; Tumor Necrosis Factors/immunology ; Interferon-gamma/immunology ; Spheroids, Cellular ; Caspases ; Janus Kinases ; STAT Transcription Factors
مستخلص: Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking 1,2 . Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1) 3 as a candidate immune-evasion gene in a pooled genetic screen 4 . Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Jenkins, R. W., Barbie, D. A. & Flaherty, K. T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018). (PMID: 29319049576523610.1038/bjc.2017.434)
Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017). (PMID: 28187290539169210.1016/j.cell.2017.01.017)
Zhou, R., Zhang, Q. & Xu, P. TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Acta Biochim. Biophys. Sin. 52, 757–767 (2020). (PMID: 3245898210.1093/abbs/gmaa051)
Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017). (PMID: 28723893592469310.1038/nature23270)
Tang, J., Shalabi, A. & Hubbard-Lucey, V. M. Comprehensive analysis of the clinical immuno-oncology landscape. Ann. Oncol. 29, 84–91 (2018). (PMID: 2922809710.1093/annonc/mdx755)
Gogas, H. et al. Cobimetinib plus atezolizumab in BRAF V600 wild-type melanoma: primary results from the randomized phase III IMspire170 study. Ann. Oncol. 32, 384–394 (2021). (PMID: 3330977410.1016/j.annonc.2020.12.004)
Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019). (PMID: 3122161910.1016/S1470-2045(19)30274-8)
Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019). (PMID: 3055938010.1038/s41586-018-0768-9)
Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020). (PMID: 32968282901455910.1038/s41586-020-2746-2)
Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018). (PMID: 29301958595351610.1126/science.aao1710)
Vredevoogd, D. W. et al. Augmenting immunotherapy impact by lowering tumor TNF cytotoxicity threshold. Cell 178, 585–599 (2019). (PMID: 3130338310.1016/j.cell.2019.06.014)
Zhao, C. & Zhao, W. TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opin. Ther. Targets 23, 437–446 (2019). (PMID: 3093271310.1080/14728222.2019.1601702)
Kwon, J. & Bakhoum, S. F. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov. 10, 26–39 (2020). (PMID: 3185271810.1158/2159-8290.CD-19-0761)
Jenkins, R. W. et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 8, 196–215 (2018). (PMID: 2910116210.1158/2159-8290.CD-17-0833)
Zhu, L. et al. TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis. Nat. Cell Biol. 21, 1604–1614 (2019). (PMID: 31792381690111610.1038/s41556-019-0429-8)
Hasan, M. & Yan, N. Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies. Pharmacol. Res. 111, 336–342 (2016). (PMID: 27353409570304710.1016/j.phrs.2016.04.008)
Lo, J. A. et al. Epitope spreading toward wild-type melanocyte-lineage antigens rescues suboptimal immune checkpoint blockade responses. Sci. Transl. Med. 13, eabd8636 (2021). (PMID: 33597266813000810.1126/scitranslmed.abd8636)
Aref, A. R. et al. 3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab Chip 18, 3129–3143 (2018). (PMID: 30183789627459010.1039/C8LC00322J)
Voabil, P. et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat. Med. 27, 1250–1261 (2021). (PMID: 3423913410.1038/s41591-021-01398-3)
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018). (PMID: 10.1016/j.cell.2018.12.034)
Yu, J. et al. Regulation of T-cell activation and migration by the kinase TBK1 during neuroinflammation. Nat. Commun. 6, 6074 (2015). (PMID: 2560682410.1038/ncomms7074)
Lee, M. S. J. et al. B cell-intrinsic TBK1 is essential for germinal center formation during infection and vaccination in mice. J. Exp. Med. 219, e20211336 (2022). (PMID: 3491010610.1084/jem.20211336)
Jin, J. et al. The kinase TBK1 controls IgA class switching by negatively regulating noncanonical NF-κB signaling. Nat. Immunol. 13, 1101–1109 (2012). (PMID: 23023393347730710.1038/ni.2423)
Xiao, Y. et al. The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity. J. Exp. Med. 214, 1493–1507 (2017). (PMID: 28356390541333710.1084/jem.20161524)
Gao, T. et al. Myeloid cell TBK1 restricts inflammatory responses. Proc. Natl Acad. Sci. USA 119, e2107742119 (2022). (PMID: 35074921879480910.1073/pnas.2107742119)
Hagan, R. S., Torres-Castillo, J. & Doerschuk, C. M. Myeloid TBK1 signaling contributes to the immune response to influenza. Am. J. Respir. Cell Mol. Biol. 60, 335–345 (2019). (PMID: 10.1165/rcmb.2018-0122OC)
Barth Jr, R. J., Mule, J. J., Spiess, P. J. & Rosenberg, S. A. Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8 + tumor-infiltrating lymphocytes. J. Exp. Med. 173, 647–658 (1991). (PMID: 190007910.1084/jem.173.3.647)
Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554 (2016). (PMID: 10.1016/j.cell.2016.11.022279120615385895)
Kearney, C. J. et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci. Immunol. 3, eaar3451 (2018). (PMID: 2977699310.1126/sciimmunol.aar3451)
Kearney, C. J. et al. PD-L1 and IAPs co-operate to protect tumors from cytotoxic lymphocyte-derived TNF. Cell Death Differ. 24, 1705–1716 (2017). (PMID: 28665401559642910.1038/cdd.2017.94)
Hafner, M., Niepel, M., Chung, M. & Sorger, P. K. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods 13, 521–527 (2016). (PMID: 27135972488733610.1038/nmeth.3853)
Clark, K. et al. Novel cross-talk within the IKK family controls innate immunity. Biochem. J. 434, 93–104 (2011). (PMID: 2113841610.1042/BJ20101701)
Thomson, D. W. et al. Discovery of GSK8612, a highly selective and potent TBK1 inhibitor. ACS Med. Chem. Lett. 10, 780–785 (2019). (PMID: 31097999651200710.1021/acsmedchemlett.9b00027)
Crew, A. P. et al. Identification and characterization of Von Hippel-Lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J. Med. Chem. 61, 583–598 (2018). (PMID: 2869229510.1021/acs.jmedchem.7b00635)
Lafont, E. et al. TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation. Nat. Cell Biol. 20, 1389–1399 (2018). (PMID: 30420664626810010.1038/s41556-018-0229-6)
Xu, D. et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell 174, 1477–1491 (2018). (PMID: 30146158612874910.1016/j.cell.2018.07.041)
Weinlich, R., Oberst, A., Beere, H. M. & Green, D. R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127–136 (2017). (PMID: 2799943810.1038/nrm.2016.149)
Park, H.-H. et al. HS-1371, a novel kinase inhibitor of RIP3-mediated necroptosis. Exp. Mol. Med. 50, 1–15 (2018). (PMID: 305232626052162)
Hildebrand, J. M. et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc. Natl Acad. Sci. USA 111, 15072–15077 (2014). (PMID: 25288762421034710.1073/pnas.1408987111)
Knuth, A.-K. et al. Interferons transcriptionally up-regulate MLKL expression in cancer cells. Neoplasia 21, 74–81 (2019). (PMID: 3052198110.1016/j.neo.2018.11.002)
Montero, J. et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 160, 977–989 (2015). (PMID: 25723171439119710.1016/j.cell.2015.01.042)
Heijink, A. M. et al. BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nat. Commun. 10, 100 (2019). (PMID: 30626869632705910.1038/s41467-018-07927-y)
Sivick, K. E. et al. Magnitude of therapeutic sting activation determines CD8 T cell-mediated anti-tumor immunity. Cell Rep. 29, 785–789 (2019).
Knelson, E. H. et al. Activation of tumor-cell STING primes NK-cell therapy. Cancer Immunol. Res. 10, 947–961 (2022). (PMID: 35678717935720610.1158/2326-6066.CIR-22-0017)
Griffin, G. K. et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature 595, 309–314 (2021). (PMID: 33953401916616710.1038/s41586-021-03520-4)
Zhu, Y. et al. STING: a master regulator in the cancer-immunity cycle. Mol. Cancer 18, 152 (2019). (PMID: 31679519682725510.1186/s12943-019-1087-y)
Wang, H. et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc. Natl Acad. Sci. USA 114, 1637–1642 (2017). (PMID: 28137885532099410.1073/pnas.1621363114)
Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014). (PMID: 25517615438488410.1016/j.immuni.2014.10.017)
Taft, J. et al. Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death. Cell 184, 4447–4463 (2021). (PMID: 34363755838074110.1016/j.cell.2021.07.026)
Karki, R. et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184, 149–168 (2021). (PMID: 3327835710.1016/j.cell.2020.11.025)
Hegde, P. S. & Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 52, 17–35 (2020). (PMID: 3194026810.1016/j.immuni.2019.12.011)
Deng, R. et al. Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. MAbs 8, 593–603 (2016). (PMID: 26918260496683610.1080/19420862.2015.1136043)
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018). (PMID: 29409532580205410.1186/s13059-017-1382-0)
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019). (PMID: 31740819688469310.1038/s41592-019-0619-0)
Ntranos, V., Yi, L., Melsted, P. & Pachter, L. A discriminative learning approach to differential expression analysis for single-cell RNA-seq. Nat. Methods 16, 163–166 (2019). (PMID: 3066477410.1038/s41592-018-0303-9)
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 16199517123989610.1073/pnas.0506580102)
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016). (PMID: 26780180474412510.1038/nbt.3437)
Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014). (PMID: 25184501426273810.1038/nbt.3026)
Lu, H. et al. PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature 550, 133–136 (2017). (PMID: 28953887589134810.1038/nature24040)
van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015). (PMID: 25957691642827610.1016/j.cell.2015.03.053)
Fraser, C., Ryan, J. & Sarosiek, K. BH3 profiling: a functional assay to measure apoptotic priming and dependencies. Methods Mol. Biol. 1877, 61–76 (2019). (PMID: 30535998732516510.1007/978-1-4939-8861-7_4)
Filbin, M. R. et al. Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Rep. Med. 2, 100287 (2021). (PMID: 33969320809103110.1016/j.xcrm.2021.100287)
Conant, D. et al. Inference of CRISPR edits from Sanger trace data. CRISPR J. 5, 123–130 (2022). (PMID: 3511929410.1089/crispr.2021.0113)
Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014). (PMID: 25300484426766910.1093/nar/gku936)
معلومات مُعتمدة: R01 AR072304 United States AR NIAMS NIH HHS; R01 DK125263 United States DK NIDDK NIH HHS; P01 CA163222 United States CA NCI NIH HHS; T32 GM007753 United States GM NIGMS NIH HHS; P01 CA240239 United States CA NCI NIH HHS; R37 CA248565 United States CA NCI NIH HHS; T32 CA207021 United States CA NCI NIH HHS; K99 CA259511 United States CA NCI NIH HHS; K08 CA226391 United States CA NCI NIH HHS; R01 CA222871 United States CA NCI NIH HHS; R01 AR043369 United States AR NIAMS NIH HHS
المشرفين على المادة: 0 (Programmed Cell Death 1 Receptor)
EC 2.7.11.1 (Protein Serine-Threonine Kinases)
EC 2.7.11.1 (TBK1 protein, human)
0 (PDCD1 protein, human)
0 (Tumor Necrosis Factors)
82115-62-6 (Interferon-gamma)
EC 3.4.22.- (Caspases)
EC 2.7.10.2 (Janus Kinases)
0 (STAT Transcription Factors)
تواريخ الأحداث: Date Created: 20230112 Date Completed: 20230316 Latest Revision: 20240607
رمز التحديث: 20240607
مُعرف محوري في PubMed: PMC10171827
DOI: 10.1038/s41586-023-05704-6
PMID: 36634707
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-05704-6