دورية أكاديمية

PET-CT in the Evaluation of Neoadjuvant/Adjuvant Treatment Response of Soft-tissue Sarcomas: A Comprehensive Review of the Literature.

التفاصيل البيبلوغرافية
العنوان: PET-CT in the Evaluation of Neoadjuvant/Adjuvant Treatment Response of Soft-tissue Sarcomas: A Comprehensive Review of the Literature.
المؤلفون: Castillo-Flores S; Medical Student at Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Peru., Gonzalez MR; Medical Student at Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Peru., Bryce-Alberti M; Medical Student at Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Peru., de Souza F; Division of Musculoskeletal Radiology, Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida., Subhawong TK; Division of Musculoskeletal Radiology, Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida., Kuker R; Division of Musculoskeletal Radiology, Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida., Pretell-Mazzini J; Division of Orthopedic Oncology, Miami Cancer Institute, Baptist Health System South Florida, Plantation, Florida.
المصدر: JBJS reviews [JBJS Rev] 2022 Dec 12; Vol. 10 (12). Date of Electronic Publication: 2022 Dec 12 (Print Publication: 2022).
نوع المنشور: Review; Journal Article
اللغة: English
بيانات الدورية: Publisher: Wolters Kluwer Country of Publication: United States NLM ID: 101674872 Publication Model: eCollection Cited Medium: Internet ISSN: 2329-9185 (Electronic) Linking ISSN: 23299185 NLM ISO Abbreviation: JBJS Rev Subsets: MEDLINE
أسماء مطبوعة: Publication: 2016- : Philadelphia : Wolters Kluwer
Original Publication: Needham, MA : Journal of Bone and Joint Surgery, Inc., [2013]-
مواضيع طبية MeSH: Sarcoma*/diagnostic imaging , Sarcoma*/therapy , Soft Tissue Neoplasms*/diagnostic imaging , Soft Tissue Neoplasms*/therapy, Humans ; Positron Emission Tomography Computed Tomography ; Neoadjuvant Therapy ; Positron-Emission Tomography/methods ; Neoplasm Recurrence, Local
مستخلص: ➢: In soft-tissue sarcomas (STSs), the use of positron emission tomography-computed tomography (PET-CT) through a standardized uptake value reduction rate correlates well with histopathological response to neoadjuvant treatment and survival.
➢: PET-CT has shown a better sensitivity to diagnose systemic involvement compared with magnetic resonance imaging and CT; therefore, it has an important role in detecting recurrent systemic disease. However, delaying the use of PET-CT scan, to differentiate tumor recurrence from benign fluorodeoxyglucose uptake changes after surgical treatment and radiotherapy, is essential.
➢: PET-CT limitations such as difficult differentiation between benign inflammatory and malignant processes, inefficient discrimination between benign soft-tissue tumors and STSs, and low sensitivity when evaluating small pulmonary metastases must be of special consideration.
Competing Interests: Disclosure: The Disclosure of Potential Conflicts of Interest forms are provided with the online version of the article (http://links.lww.com/JBJSREV/A883).
(Copyright © 2022 by The Journal of Bone and Joint Surgery, Incorporated.)
References: Jo VY, Doyle LA. Refinements in sarcoma classification in the current 2013 World Health Organization classification of tumours of soft tissue and bone. Surg Oncol Clin North Am. 2016;25(4):621-43.
Kassem TW, Abdelaziz O, Emad-Eldin S. Diagnostic value of (18)F-FDG-PET/CT for the follow-up and restaging of soft tissue sarcomas in adults. Diagn Interv Imaging. 2017;98(10):693-8.
Sambri A, Bianchi G, Longhi A, Righi A, Donati DM, Nanni C, Fanti S, Errani C. The role of 18F-FDG PET/CT in soft tissue sarcoma. Nucl Med Commun. 2019;40(6):626-31.
Kumar R, Chauhan A, Vellimana AK, Chawla M. Role of PET/PET-CT in the management of sarcomas. Expert Rev Anticancer Ther. 2006;6(8):1241-50.
Basu S, Zaidi H, Holm S, Alavi A. Quantitative techniques in PET-CT imaging. Curr Med Imaging Rev. 2011;7(3):216-33.
Tian M, Zhang H, Endo K. Comparison of cell proliferation, protein, and glucose metabolism in musculoskeletal tumors in a PET study. J Biomed Biotechnol. 2011;2011:1-8.
Fendler WP, Chalkidis RP, Ilhan H, Knösel T, Herrmann K, Issels RD, Bartenstein P, Cyran CC, Lindner LH, Hacker M. Evaluation of several FDG PET parameters for prediction of soft tissue tumour grade at primary diagnosis and recurrence. Eur Radiol. 2015;25(8):2214-21.
Reyes Marlés RH, Navarro Fernández JL, Puertas García-Sandoval JP, Santonja Medina F, Mohamed Salem L, Frutos Esteban L, Contreras Gutierrez JF, Castellon Sanchez MI, Ruiz Merino G, Claver Valderas MA. Clinical value of baseline 18F-FDG PET/CT in soft tissue sarcomas. Eur J Hybrid Imaging. 2021;5(1):16.
Lodge MA, Chaudhry MA, Wahl RL. Noise considerations for PET quantification using maximum and peak standardized uptake value. J Nucl Med. 2012;53(7):1041-7.
Kitao T, Shiga T, Hirata K, Sekizawa M, Takei T, Yamashiro K, Tamaki N. Volume-based parameters on FDG PET may predict the proliferative potential of soft-tissue sarcomas. Ann Nucl Med. 2019;33(1):22-31.
Sachpekidis C, Karampinis I, Jakob J, Kasper B, Nowak K, Pilz L, Attenberger U, Gaiser T, Derigs HG, Schwarzbach M, Hohenberger P, Dimitrakopoulou-Strauss A, Ronellenfitsch U. Neoadjuvant pazopanib treatment in high-risk soft tissue sarcoma: a quantitative dynamic (18)F-FDG PET/CT study of the German Interdisciplinary Sarcoma Group. Cancers. 2019;11(6):790.
Katal S, Gholamrezanezhad A, Kessler M, Olyaei M, Jadvar H. PET in the diagnostic management of soft tissue sarcomas of musculoskeletal origin. PET Clin. 2018;13(4):609-21.
Rodríguez-Alfonso B, Simó-Perdigó M, Orcajo Rincón J. Functional image in soft tissue sarcomas: an update of the indications of (18)F-FDG-PET/CT. Rev Espanola Med Nucl E Imagen Mol. 2020;39(4):233-43.
Eilber FC, Rosen G, Eckardt J, Forscher C, Nelson SD, Selch M, Dorey F, Eilber FR. Treatment-induced pathologic necrosis: a predictor of local recurrence and survival in patients receiving neoadjuvant therapy for high-grade extremity soft tissue sarcomas. J Clin Oncol. 2001;19(13):3203-9.
Gannon NP, Stemm MH, King DM, Bedi M. Pathologic necrosis following neoadjuvant radiotherapy or chemoradiotherapy is prognostic of poor survival in soft tissue sarcoma. J Cancer Res Clin Oncol. 2019;145(5):1321-30.
Menendez LR, Ahlmann ER, Savage K, Cluck M, Fedenko AN. Tumor necrosis has no prognostic value in neoadjuvant chemotherapy for soft tissue sarcoma. Clin Orthopaedics Relat Res. 2007;455:219-24.
Rao SR, Lazarides AL, Leckey BL, Lane WO, Visgauss JD, Somarelli JA, Kirsch DG, Larrier NA, Brigman BE, Blazer DG, Cardona DM, Eward WC. Extent of tumor fibrosis/hyalinization and infarction following neoadjuvant radiation therapy is associated with improved survival in patients with soft-tissue sarcoma. Cancer Med. 2022;11(1):194-206.
Benz MR, Czernin J, Allen-Auerbach MS, Tap WD, Dry SM, Elashoff D, Chow K, Evilevitch V, Eckardt JJ, Phelps ME, Weber WA, Eilber FC. FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin Cancer Res. 2009;15(8):2856-63.
Evilevitch V, Weber WA, Tap WD, Allen-Auerbach M, Chow K, Nelson SD, Eilber FR, Eckardt JJ, Elashoff RM, Phelps ME, Czernin J, Eilber FC. Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res. 2008;14(3):715-20.
Tateishi U, Kawai A, Chuman H, Nakatani F, Beppu Y, Seki K, Miyake M, Terauchi T, Moriyama N, Kim EE. PET/CT allows stratification of responders to neoadjuvant chemotherapy for high-grade sarcoma: a prospective study. Clin Nucl Med. 2011;36(7):526-32.
Schuetze SM, Rubin BP, Vernon C, Hawkins DS, Bruckner JD, Conrad EU III, Eary JF. Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer. 2005;103(2):339-48.
Herrmann K, Benz MR, Czernin J, Allen-Auerbach MS, Tap WD, Dry SM, Schuster T, Eckardt JJ, Phelps ME, Weber WA, Eilber FC. 18F-FDG-PET/CT Imaging as an early survival predictor in patients with primary high-grade soft tissue sarcomas undergoing neoadjuvant therapy. Clin Cancer Res. 2012;18(7):2024-31.
Pervaiz N, Colterjohn N, Farrokhyar F, Tozer R, Figueredo A, Ghert M. A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer. 2008;113(3):573-81.
Seddon B, Strauss SJ, Whelan J, Leahy M, Woll PJ, Cowie F, Rothermundt C, Wood Z, Benson C, Ali N, Marples M, Veal GJ, Jamieson D, Kuver K, Tirabosco R, Forsyth S, Nash S, Dehbi HM, Beare S. Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft-tissue sarcomas (GeDDiS): a randomised controlled phase 3 trial. Lancet Oncol. 2017;18(10):1397-410.
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-47.
Schuetze SM, Baker LH, Benjamin RS, Canetta R. Selection of response criteria for clinical trials of sarcoma treatment. Oncologist. 2008;13(S2):32-40.
Choi H, Charnsangavej C, Faria SC, Macapinlac HA, Burgess MA, Patel SR, Chen LL, Podoloff DA, Benjamin RS. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25(13):1753-9.
Stacchiotti S, Collini P, Messina A, Morosi C, Barisella M, Bertulli R, Piovesan C, Dileo P, Torri V, Gronchi A, Casali PG. High-grade soft-tissue sarcomas: tumor response assessment—pilot study to assess the correlation between radiologic and pathologic response by using RECIST and Choi criteria. Radiology. 2009;251(2):447-56.
Tanaka K, Ogawa G, Mizusawa J, Naka N, Kawai A, Takahashi M, Hiruma T, Matsumoto Y, Tsuchiya H, Nakayama R, Hatano H, Emori M, Hosaka M, Yoshida Y, Toguchida J, Abe S, Asanuma K, Yokoyama R, Hiraga H, Yonemoto T, Morii T, Matsumoto S, Nagano A, Yoshikawa H, Fukuda H, Ozaki T, Iwamoto Y. Prospective comparison of various radiological response criteria and pathological response to preoperative chemotherapy and survival in operable high-grade soft tissue sarcomas in the Japan Clinical Oncology Group study JCOG0304. World J Surg Oncol. 2018;16(1):162.
Miki Y, Ngan S, Clark JCM, Akiyama T, Choong PFM. The significance of size change of soft tissue sarcoma during preoperative radiotherapy. Eur J Surg Oncol. 2010;36(7):678-83.
Grünwald V, Litière S, Young R, Messiou C, Lia M, Wardelmann E, van der Graaf W, Gronchi A, Judson I. Absence of progression, not extent of tumour shrinkage, defines prognosis in soft-tissue sarcoma: an analysis of the EORTC 62012 study of the EORTC STBSG. Eur J Cancer. 2016;64:44-51.
Gennaro N, Reijers S, Bruining A, Messiou C, Haas R, Colombo P, Bodalal Z, Beets-Tan R, van Houdt W, van der Graaf WT. Imaging response evaluation after neoadjuvant treatment in soft tissue sarcomas: where do we stand? Crit Rev Oncol Hematol. 2021;160:103309.
Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(suppl 1):122S-150S.
Crombé A, Marcellin PJ, Buy X, Stoeckle E, Brouste V, Italiano A, Le Loarer F, Kind M. Soft-tissue sarcomas: assessment of MRI features correlating with histologic grade and patient outcome. Radiology. 2019;291(3):710-21.
Soldatos T, Ahlawat S, Montgomery E, Chalian M, Jacobs MA, Fayad LM. Multiparametric assessment of treatment response in high-grade soft-tissue sarcomas with anatomic and functional MR imaging sequences. Radiology. 2016;278(3):831-40.
Grueneisen J, Schaarschmidt B, Demircioglu A, Chodyla M, Martin O, Bertram S, Wetter A, Bauer S, Fendler WP, Podleska L, Forsting M, Herrmann K, Umutlu L. (18)F-FDG PET/MRI for therapy response assessment of isolated limb perfusion in patients with soft-tissue sarcomas. J Nucl Med. 2019;60(11):1537-42.
Eary JF, Conrad EU, O'Sullivan J, Hawkins DS, Schuetze SM, O'Sullivan F. Sarcoma mid-therapy [F-18]fluorodeoxyglucose positron emission tomography (FDG PET) and patient outcome. J Bone Joint Surg. 2014;96(2):152-8.
Fendler WP, Lehmann M, Todica A, Herrmann K, Knösel T, Angele MK, Durr HR, Rauch J, Bartenstein P, Cyran CC, Hacker M, Lindner LH. PET response criteria in solid tumors predicts progression-free survival and time to local or distant progression after chemotherapy with regional hyperthermia for soft-tissue sarcoma. J Nucl Med. 2015;56(4):530-7.
Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234-48.
Wolsztynski E, O'Sullivan F, Keyes E, O'Sullivan J, Eary JF. Positron emission tomography-based assessment of metabolic gradient and other prognostic features in sarcoma. J Med Imaging. 2018;5(2):1.
Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60(14):5471-96.
Park SY, Chung HW, Chae SY, Lee JS. Comparison of MRI and PET-CT in detecting the loco-regional recurrence of soft tissue sarcomas during surveillance. Skeletal Radiol. 2016;45(10):1375-84.
Hoshi M, Oebisu N, Takada J, Ieguchi M, Wakasa K, Nakamura H. Role of FDG-PET/CT for monitoring soft tissue tumors. Oncol Lett. 2014;7(4):1243-8.
Roberts CC, Kransdorf MJ, Beaman FD, Adler RS, Amini B, Appel M, Bernard SA, Fries IB, Germano IM, Greenspan BS, Holly LT, Kubicky CD, Shek-Man Lo S, Mosher TJ, Sloan AE, Tuite MJ, Walker EA, Ward RJ, Wessell DE, Weissman BN. ACR appropriateness criteria follow-up of malignant or aggressive musculoskeletal tumors. J Am Coll Radiol. 2016;13(4):389-400.
von Mehren M, Randall RL, Benjamin RS, Boles S, Bui MM, Conrad EU, Ganjoo KN, George S, Gonzalez RJ, Heslin MJ, Kane JM, Koon H, Mayerson J, McCarter M, McGarry SV, Meyer C, O'Donnell RJ, Pappo AS, Paz IB, Petersen IA, Pfeifer JD, Riedel RF, Schuetze S, Schupak KD, Schwartz HS, Tap WD, Wayne JD, Bergman MA, Scavone J. Soft tissue sarcoma, version 2.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016;14(6):758-86.
Eugene T, Corradini N, Carlier T, Dupas B, Leux C, Bodet-Milin C. 18F-FDG-PET/CT in initial staging and assessment of early response to chemotherapy of pediatric rhabdomyosarcomas. Nucl Med Commun. 2012;33(10):1089-95.
Ricard F, Cimarelli S, Deshayes E, Mognetti T, Thiesse P, Giammarile F. Additional Benefit of F-18 FDG PET/CT in the staging and follow-up of pediatric rhabdomyosarcoma. Clin Nucl Med. 2011;36(8):672-7.
Ulaner GA, Lyall A. Identifying and distinguishing treatment effects and complications from malignancy at FDG PET/CT. RadioGraphics. 2013;33(6):1817-34.
Bhargava P, Zhuang H, Kumar R, Charron M, Alavi A. Iatrogenic artifacts on whole-body F-18 FDG PET imaging. Clin Nucl Med. 2004;29(7):429-39.
Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, Wiseman GA, Kostakoglu L, Scheidhauer K, Buck A, Naumann R, Spaepen K, Hicks RJ, Weber WA, Reske SN, Schwaiger M, Schwartz LH, Zijlstra JM, Siegel BA, Cheson BD. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571-8.
Aoki J, Watanabe H, Shinozaki T, Takagishi K, Tokunaga M, Koyama Y, Sato N, Endo K. FDG-PET for preoperative differential diagnosis between benign and malignant soft tissue masses. Skeletal Radiol. 2003;32(3):133-8.
Andersen KF, Fuglo HM, Rasmussen SH, Petersen MM, Loft A. Semi-quantitative calculations of primary tumor metabolic activity using F-18 FDG PET/CT as a predictor of survival in 92 patients with high-grade bone or soft tissue sarcoma. Medicine (Baltimore). 2015;94(28):e1142.
Annovazzi A, Rea S, Zoccali C, Sciuto R, Baldi J, Anelli V, Petrongari MG, Pescarmona E, Biagini R, Ferraresi V. Diagnostic and clinical impact of 18F-FDG PET/CT in staging and restaging soft-tissue sarcomas of the extremities and trunk: mono-institutional retrospective study of a sarcoma referral center. J Clin Med. 2020;9(8):2549.
Roberge D, Vakilian S, Alabed YZ, Turcotte RE, Freeman CR, Hickeson M. FDG PET/CT in initial staging of adult soft-tissue sarcoma. Sarcoma. 20122012;2012:1-7.
Bloem JL, Vriens D, Krol ADG, Özdemir M, Sande MAvd, Gelderblom H, Bovee JV, Hage JAvd, Noebauer-Huhmann IM. Therapy-related imaging findings in patients with sarcoma. Semin Musculoskelet Radiol. 2020;24(06):676-91.
Hong Sp, Lee SE, Choi YL, Seo SW, Sung KS, Koo HH, Choi JY. Prognostic value of 18F-FDG PET/CT in patients with soft tissue sarcoma: comparisons between metabolic parameters. Skeletal Radiol. 2014;43(5):641-8.
Chen B, Feng H, Xie J, Li C, Zhang Y, Wang S. Differentiation of soft tissue and bone sarcomas from benign lesions utilizing (18)F-FDG PET/CT-derived parameters. BMC Med Imaging. 2020;20(1):85.
Choi ES, Ha SG, Kim HS, Ha JH, Paeng JC, Han I. Total lesion glycolysis by 18F-FDG PET/CT is a reliable predictor of prognosis in soft-tissue sarcoma. Eur J Nucl Med Mol Imaging. 2013;40(12):1836-42.
Royce TJ, Punglia RS, Chen AB, Patel SA, Thornton KA, Raut CP, Baldini EH. Cost-effectiveness of surveillance for distant recurrence in extremity soft tissue sarcoma. Ann Surg Oncol. 2017;24(11):3264-70.
Becher S, Oskouei S. PET imaging in sarcoma. Orthop Clin North Am. 2015;46(3):409-15, xi.
Johnsen B, Fasmer KE, Boye K, Rosendahl K, Trovik C, Biermann M, Aukland SM. Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005-2012. Pediatr Radiol. 2017;47(1):82-8.
Riola-Parada C, García-Cañamaque L, Pérez-Dueñas V, Garcerant-Tafur M, Carreras-Delgado JL. PET/RM simultánea vs. PET/TC en oncología. Una revisión sistemática. Rev Esp Med Nucl E Imagen Mol. 2016;35(5):306-12.
Zhang X, Chen YLE, Lim R, Huang C, Chebib IA, El Fakhri G. Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging. Magn Reson Imaging. 2016;34(3):276-9.
Lange SES, Zheleznyak A, Studer M, O'Shannessy DJ, Lapi SE, Van Tine BA. Development of 89Zr-Ontuxizumab for in vivo TEM-1/endosialin PET applications. Oncotarget. 2016;7(11):13082-92.
Buck AK, Herrmann K, Büschenfelde CMZ, Juweid ME, Bischoff M, Glatting G, Weirich G, Möller P, Wester HJ, Scheidhauer K, Dechow T, Peschel C, Schwaiger M, Reske SN. Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res. 2008;14(10):2970-7.
Cobben DCP, Elsinga PH, Suurmeijer AJH, Vaalburg W, Maas B, Jager PL, Hoekstra HJ. Detection and grading of soft tissue sarcomas of the extremities with (18)F-3′-fluoro-3′-deoxy-L-thymidine. Clin Cancer Res. 2004;10(5):1685-90.
Benz MR, Czernin J, Allen-Auerbach MS, Dry SM, Sutthiruangwong P, Spick C, Radu C, Weber WA, Tap WD, Eilber FC. 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: a pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer. 2012;118(12):3135-44.
Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, Chin LK, Hofstrand PD, Grierson JR, Eary JF, Krohn KA. [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30(5):695-704.
Peng Y, Bi L, Guo Y, Feng D, Fulham M, Kim J. Deep multi-modality collaborative learning for distant metastases predication in PET-CT soft-tissue sarcoma studies. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Berlin, Germany: IEEE; 2019:3658-88. Available at: https://ieeexplore.ieee.org/document/8857666/ . Accessed December 12, 2021.
Deng J, Zeng W, Shi Y, Kong W, Guo S. Fusion of FDG-PET image and clinical features for prediction of lung metastasis in soft tissue sarcomas. Comput Math Methods Med. 2020;2020:1-11.
Wang YR, Baratto L, Hawk KE, Theruvath AJ, Pribnow A, Thakor AS, Gatidis S, Lu R, Gummidipundi SE, Garcia-Diaz J, Rubin D, Daldrup-Link HE. Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. Eur J Nucl Med Mol Imaging. 2021;48(9):2771-81.
Cui J, Gong K, Guo N, Wu C, Meng X, Kim K, Zheng K, Wu Z, Fu L, Xu B, Zhu Z, Tian J, Liu H, Li Q. PET image denoising using unsupervised deep learning. Eur J Nucl Med Mol Imaging. 2019;46(13):2780-9.
Kang J, Gao Y, Shi F, Lalush DS, Lin W, Shen D. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images. Med Phys. 2015;42(9):5301-9.
Wang Y, Zhang P, An L, Ma G, Kang J, Shi F, Wu X, Zhou J, Lalush DS, Lin W, Shen D. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation. Phys Med Biol. 2016;61(2):791-812.
تواريخ الأحداث: Date Created: 20230114 Date Completed: 20230117 Latest Revision: 20230806
رمز التحديث: 20230807
DOI: e22.00131
PMID: 36639875
قاعدة البيانات: MEDLINE
الوصف
تدمد:2329-9185
DOI:e22.00131