دورية أكاديمية

Differential proteomics of Zika virus (ZIKV) infection reveals molecular changes potentially involved in immune system evasion by a Brazilian strain of ZIKV.

التفاصيل البيبلوغرافية
العنوان: Differential proteomics of Zika virus (ZIKV) infection reveals molecular changes potentially involved in immune system evasion by a Brazilian strain of ZIKV.
المؤلفون: Tatara JM; Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil., Rosa RL; Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil., Varela APM; Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.; Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil., Teixeira TF; Center for Experimental Cardiology, Institute of Cardiology, Porto Alegre, Brazil., Sesterheim P; Center for Experimental Cardiology, Institute of Cardiology, Porto Alegre, Brazil., Gris A; Department of Veterinary Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil., Driemeier D; Department of Veterinary Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil., Moraes ANS; Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil., Berger M; Experimental Research Center, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil., Peña RD; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA., Roehe PM; Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil., Souza DOG; Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil., Guimarães JA; Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil.; Center for Experimental Cardiology, Institute of Cardiology, Porto Alegre, Brazil., Campos AR; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA., Santi L; Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil.; Experimental Research Center, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil.; Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil., Beys-da-Silva WO; Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil. walter.beys@ufrgs.br.; Experimental Research Center, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil. walter.beys@ufrgs.br.; Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. walter.beys@ufrgs.br.
المصدر: Archives of virology [Arch Virol] 2023 Jan 20; Vol. 168 (2), pp. 70. Date of Electronic Publication: 2023 Jan 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7506870 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-8798 (Electronic) Linking ISSN: 03048608 NLM ISO Abbreviation: Arch Virol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Wien, New York, Springer-Verlag.
مواضيع طبية MeSH: Zika Virus*/physiology , Zika Virus Infection*/immunology , Immune Evasion*, Animals ; Mice ; Brazil ; Chlorocebus aethiops ; Mice, Inbred C57BL ; Proteomics ; Vero Cells
مستخلص: Zika virus (ZIKV) is an arbovirus that was responsible for multiple outbreaks from 2007 to 2015. It has been linked to cases of microcephaly in Brazil in 2015, among other neurological disorders. Differences among strains might be the reason for different clinical outcomes of infection. To evaluate this hypothesis, we performed a comparative proteomic analysis of Vero cells infected with the African strain MR766 (ZIKVAFR) and the Brazilian strain 17 SM (ZIKVBR). A total of 550 proteins were identified as differentially expressed in ZIKVAFR- or ZIKVBR-infected cells compared to the control. The main findings included upregulation of immune system pathways (neutrophil degranulation and adaptive/innate immune system) and potential activation of immune-system-related pathways by ZIKVAFR (mTOR, JAK-STAT, NF-κB, and others) compared with the ZIKVBR/control. In addition, phagocytosis by macrophages and engulfment of leukocytes were activated in ZIKVAFR infection. An in vivo analysis using an immunocompetent C57BL/6N mouse model identified interstitial pneumonia with neutrophil infiltration in the lungs only in mice infected with ZIKVBR at 48 hours postinfection, with a significant amount of virus detected. Likewise, only animals infected with ZIKVBR had viral material in the cytoplasm of lung macrophages. These results suggest that activation of the immune system by ZIKVAFR infection may lead to faster viral clearance by immune cells.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
References: Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D (2017) An update on Zika virus infection. Lancet 390(10107):2099–2109. https://doi.org/10.1016/S0140-6736(17)31450-2. (PMID: 10.1016/S0140-6736(17)31450-2)
Charrel RN, Leparc-Goffart I, Pas S, de Lamballerie X, Koopmans M, Reusken C (2016) Background review for diagnostic test development for Zika virus infection. Bull World Health Organ 94:574–584. (PMID: 10.2471/BLT.16.1712074969995)
Beaver JT, Lelutiu N, Habib R, Skountzou I (2018) Evolution of two major zika virus strains: implications for pathology, immune response, and vaccine development. Front Immunol 9:1640. https://doi.org/10.3389/fimmu.2018.01640. (PMID: 10.3389/fimmu.2018.016406058022)
Dowall SD, Graham VA, Rayner E, Hunter L, Atkinson B, Pearson G, Dennis M, Hewson R (2017) Lineage-dependent differences in the disease progression of Zika virus infection in type-I interferon receptor knockout (A129) mice. PLoS Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0005704. (PMID: 10.1371/journal.pntd.00057045510909)
Vielle NJ, Zumkehr B, García-Nicolás O, Blank F, Stojanov M, Musso D, Baud D, Summerfield A, Alves MP (2018) Silent infection of human dendritic cells by African and Asian strains of Zika virus. Sci Rep 8(1):5440. https://doi.org/10.1038/s41598-018-23734-3. (PMID: 10.1038/s41598-018-23734-35882923)
Esser-Nobis K, Aarreberg LD, Roby JA, Fairgrieve MR, Green R, Gale M Jr (2019) Comparative analysis of African and Asian strain-derived zika virus strains reveals differences in activation of and sensitivity to antiviral innate immunity. J Virol 93(13):e00640-e719. https://doi.org/10.1128/JVI.00640-19. (PMID: 10.1128/JVI.00640-196580957)
Tatara JM, Santi L, Beys-da-Silva WO (2021) Proteome alterations promoted by Zika virus infection. In: Martin CR et al (eds) Zika virus biology, transmission, and pathways: the neuroscience of zika virus, 1st edn. Elsevier, pp 307–317. (PMID: 10.1016/B978-0-12-820268-5.00028-6)
Rosa RL, Santi L, Berger M, Tureta EF, Quincozes-Santos A, Souza DO, Guimarães JA, Beys-da-Silva WO (2020) ZIKAVID-Zika virus infection database: a new platform to analyze the molecular impact of Zika virus infection. J Neurovirol 26(1):77–83. https://doi.org/10.1007/s13365-019-00799-y. (PMID: 10.1007/s13365-019-00799-y)
Thulasi SN, Raman EL, Gao J, Zhang W, Jianguo Wu, Russell MS, Walrond L, Cyr T, Lavoie JR, Safronetz D, Cao J, Sauve S, Farnsworth A, Chen W, Shi P-Y, Wang Y, Wang L, Rosu-Myles M, Li X (2020) Dysregulation of Ephrin receptor and PPAR signaling pathways in neural progenitor cells infected by Zika virus. Emerg Microbes Infect 9(1):2046–2060. https://doi.org/10.1080/22221751.2020.1818631. (PMID: 10.1080/22221751.2020.1818631)
Beys-da-Silva WO, Rosa RL, Santi L et al (2019) Zika virus infection of human mesenchymal stem cells promotes differential expression of proteins linked to several neurological diseases. Mol Neurobiol 56:4708–4717. https://doi.org/10.1007/s12035-018-1417-x. (PMID: 10.1007/s12035-018-1417-x)
Legros V, Jeannin P, Burlaud-Gaillard J, Chaze T, Gianetto QG, Butler-Browne G, Mouly V, Zoladek J, Afonso PV, Gonzàlez MN, Matondo M, Riederer I, Roingeard P, Gessain A, Choumet V, Ceccaldi PE (2020) Differentiation-dependent susceptibility of human muscle cells to Zika virus infection. PLoS Negl Trop Dis 14(8):e8282. https://doi.org/10.1371/journal.pntd.0008282. (PMID: 10.1371/journal.pntd.0008282)
Glover K, Coombs KM (2020) ZIKV infection induces DNA damage response and alters the proteome of gastrointestinal cells. Viruses 12(7):771. https://doi.org/10.3390/v12070771. (PMID: 10.3390/v120707717412063)
Rashid MU, Zahedi-Amiri A, Glover KKM, Gao A, Nickol ME, Kindrachuk J, Wilkins JA, Coombs KM (2020) Zika virus dysregulates human Sertoli cell proteins involved in spermatogenesis with little effect on tight junctions. PLoS Negl Trop Dis 14(6):e8335. https://doi.org/10.1371/journal.pntd.0008335. (PMID: 10.1371/journal.pntd.0008335)
Glover KKM, Zahedi-Amiri A, Lao Y, Spicer V, Klonisch T, Coombs KM (2020) Zika infection disrupts proteins involved in the neurosensory system. Front Cell Dev Biol 8:571. https://doi.org/10.3389/fcell.2020.00571. (PMID: 10.3389/fcell.2020.005717403212)
Aubry F, Jacobs S, Darmuzey M, Lequime S, Delang L, Fontaine A, Jupatanakul N, Miot EF, Dabo S, Manet C, Montagutelli X, Baidaliuk A, Gámbaro F, Simon-Lorière E, Gilsoul M, Romero-Vivas CM, Cao-Lormeau VM, Jarman RG, Diagne CT, Faye O, Faye O, Sall AA, Neyts J, Nguyen L, Kaptein SJF, Lambrechts L (2021) Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nat Commun 12(1):916. https://doi.org/10.1038/s41467-021-21199-z. (PMID: 10.1038/s41467-021-21199-z7876148)
Huang DW, Sherman BT, Lempicki R (2009) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 4(1):44–57. (PMID: 10.1038/nprot.2008.211)
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. (PMID: 10.1101/gr.1239303403769)
IPA (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30(4):523–530. (PMID: 10.1093/bioinformatics/btt703)
Wachholz GE, Varela APM, Teixeira TF, de Matos SMS, da Luz R, Soster P, Vianna FSL, de Souza DOG, Roehe PM, Schuler-Faccini L, Fraga LR (2021) Zika virus-induced brain malformations in chicken embryos. Birth Defects Res 113(1):22–31. https://doi.org/10.1002/bdr2.1813. (PMID: 10.1002/bdr2.1813)
Bobermin LD, Quincozes-Santos A, Santos CL, Varela APM, Teixeira TF, Wartchow KM, Lissner LJ, da Silva A, Thomaz NK, Santi L, Beys-da-Silva WO, Roehe PM, Sesterheim P, Guimarães JA, Gonçalves CA, Souza DO (2020) Zika virus exposure affects neuron-glia communication in the hippocampal slices of adult rats. Sci Rep 10(1):21604. https://doi.org/10.1038/s41598-020-78735-y. (PMID: 10.1038/s41598-020-78735-y7729948)
Araujo AQ, Silva MT, Araujo AP (2016) Zika virus-associated neurological disorders: a review. Brain 139(Pt 8):2122–2130. https://doi.org/10.1093/brain/aww158. (PMID: 10.1093/brain/aww158)
Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, Diamond MS (2016) A mouse model of zika virus pathogenesis. Cell Host Microbe 19(5):720–730. https://doi.org/10.1016/j.chom.2016.03.010. (PMID: 10.1016/j.chom.2016.03.0104866885)
De Oliveira WK, Carmo EH, Henriques CM et al (2017) Zika virus infection and associated neurologic disorders in Brazil. N Engl J Med 376(16):1591–1593. https://doi.org/10.1056/NEJMc1608612. (PMID: 10.1056/NEJMc16086125544116)
Tureta EF, da Rosa RL, Berger M, Santi L, Guimarães JA, Beys-da-Silva WO (2019) O impacto do vírus Zika no Brasil e no mundo. Revista Liberato: educação, ciência e tecnologia 20(34):153–168p. (PMID: 10.31514/rliberato.2019v20n34.p153)
Mitsikas D, Gabrani C, Giannakou K, Lamnisos D (2021) Intrauterine exposure to Zika virus and hearing loss within the first few years of life: A systematic literature review. Int J Pediatr Otorhinolaryngol 147:110801. https://doi.org/10.1016/j.ijporl.2021.110801. (PMID: 10.1016/j.ijporl.2021.110801)
Neri VC, Xavier MF, Barros PO, Melo Bento C, Marignier R, Papais Alvarenga R (2018) Case report: acute transverse myelitis after zika virus infection. Am J Trop Med Hyg 99(6):1419–1421. https://doi.org/10.4269/ajtmh.17-0938. (PMID: 10.4269/ajtmh.17-09386283478)
Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimarães KP, Benazzato C, Almeida N, Pignatari GC, Romero S, Polonio CM, Cunha I, Freitas CL, Brandão WN, Rossato C, Andrade DG, Faria Dde P, Garcez AT, Buchpigel CA, Braconi CT, Mendes E, Sall AA, Zanotto PM, Peron JP, Muotri AR, Beltrão-Braga PC (2016) The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534(7606):267–271. https://doi.org/10.1038/nature18296. (PMID: 10.1038/nature182964902174)
Sheridan MA, Balaraman V, Schust DJ, Ezashi T, Roberts RM, Franz AWE (2018) African and Asian strains of Zika virus differ in their ability to infect and lyse primitive human placental trophoblast. PLoS ONE 13(7):e0286. https://doi.org/10.1371/journal.pone.0200086. (PMID: 10.1371/journal.pone.0200086)
Shao Q, Herrlinger S, Zhu YN, Yang M, Goodfellow F, Stice SL, Qi XP, Brindley MA, Chen JF (2017) The African Zika virus MR-766 is more virulent and causes more severe brain damage than current Asian strain and dengue virus. Development 144(22):4114–4124. https://doi.org/10.1242/dev.156752. (PMID: 10.1242/dev.1567525719247)
Jaeger AS, Murrieta RA, Goren LR, Crooks CM, Moriarty RV, Weiler AM, Rybarczyk S, Semler MR, Huffman C, Mejia A, Simmons HA, Fritsch M, Osorio JE, Eickhoff JC, O’Connor SL, Ebel GD, Friedrich TC, Aliota MT (2019) Zika viruses of African and Asian strains cause fetal harm in a mouse model of vertical transmission. PLoS Negl Trop Dis 13(4):e7343. https://doi.org/10.1371/journal.pntd.0007343. (PMID: 10.1371/journal.pntd.0007343)
Udenze D, Trus I, Berube N, Gerdts V, Karniychuk U (2019) The African strain of Zika virus causes more severe in utero infection than Asian strain in a porcine fetal transmission model. Emerg Microbes Infect. 8(1):1098–1107. https://doi.org/10.1080/22221751.2019.1644967. (PMID: 10.1080/22221751.2019.16449676711198)
Ramos da Silva S, Cheng F, Huang IC, Jung JU, Gao SJ (2019) Efficiencies and kinetics of infection in different cell types/lines by African and Asian strains of Zika virus. J Med Virol 91(2):179–189. https://doi.org/10.1002/jmv.25306. (PMID: 10.1002/jmv.25306)
Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R (2018) Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol 16(3):125–142. https://doi.org/10.1038/nrmicro.2017.170. (PMID: 10.1038/nrmicro.2017.1707097628)
Martín-Acebes MA, Gabandé-Rodríguez E, García-Cabrero AM et al (2016) Host sphingomyelin increases West Nile virus infection in vivo. J Lipid Res 57(3):422–432. https://doi.org/10.1194/jlr.M064212. (PMID: 10.1194/jlr.M0642124766991)
Mohd Ropidi MI, Khazali AS, Nor Rashid N, Yusof R (2020) Endoplasmic reticulum: a focal point of Zika virus infection. J Biomed Sci 27(1):27. https://doi.org/10.1186/s12929-020-0618-6. (PMID: 10.1186/s12929-020-0618-66971992)
Martínez LE, Garcia G Jr, Contreras D, Gong D, Sun R, Arumugaswami V (2020) Zika virus mucosal infection provides protective immunity. J Virol 94(9):e00067-e120. https://doi.org/10.1128/JVI.00067-20. (PMID: 10.1128/JVI.00067-207163142)
Halbleib K, Pesek K, Covino R, Hofbauer HF, Wunnicke D, Hänelt I, Hummer G, Ernst R (2017) Activation of the unfolded protein response by lipid bilayer stress. Mol Cell 67(4):673-684.e8. https://doi.org/10.1016/j.molcel.2017.06.012. (PMID: 10.1016/j.molcel.2017.06.012)
Rios-Fuller TJ, Mahe M, Walters B et al (2020) Translation regulation by eIF2α phosphorylation and mTORC1 signaling pathways in non-communicable diseases (NCDs). Int J Mol Sci 21(15):5301. https://doi.org/10.3390/ijms21155301. (PMID: 10.3390/ijms211553017432514)
Wek RC (2018) Role of eIF2α kinases in translational control and adaptation to cellular stress. Cold Spring Harb Perspect Biol 10(7):a32870. https://doi.org/10.1101/cshperspect.a032870. (PMID: 10.1101/cshperspect.a032870)
Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA, Mallucci GR (2013) Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 5(206):206. https://doi.org/10.1126/scitranslmed.3006767. (PMID: 10.1126/scitranslmed.3006767)
Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, Halliday M, Morgan J, Dinsdale D, Ortori CA, Barrett DA, Tsaytler P, Bertolotti A, Willis AE, Bushell M, Mallucci GR (2012) Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485(7399):507–511. https://doi.org/10.1038/nature11058.Erratum.In:Nature.2014;511(7509):370. (PMID: 10.1038/nature11058.Erratum.In:Nature.2014;511(7509):3703378208)
Gim E, Shim DW, Hwang I, Shin OS, Yu JW (2019) Zika Virus Impairs Host NLRP3-mediated Inflammasome Activation in an NS3-dependent Manner. Immune Netw 19(6):e40. https://doi.org/10.4110/in.2019.19.e40. (PMID: 10.4110/in.2019.19.e406943171)
Papa MP, Meuren LM, Coelho SVA et al (2017) Zika virus infects, activates, and crosses brain microvascular endothelial cells, without barrier disruption. Front Microbiol 8:2557. https://doi.org/10.3389/fmicb.2017.02557. (PMID: 10.3389/fmicb.2017.025575743735)
Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175. https://doi.org/10.1038/nri3399. (PMID: 10.1038/nri3399)
Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A (2019) The metabolic signature of macrophage responses. Front Immunol 10:1462. https://doi.org/10.3389/fimmu.2019.01462. (PMID: 10.3389/fimmu.2019.014626618143)
Rosa-Fernandes L, Barbosa RH, Dos Santos MLB et al (2020) Cellular imprinting proteomics assay: a novel method for detection of neural and ocular disorders applied to congenital Zika virus syndrome. J Proteome Res 19(11):4496–4515. https://doi.org/10.1021/acs.jproteome.0c00320. (PMID: 10.1021/acs.jproteome.0c003207640952)
Manangeeswaran M, Ireland DD, Verthelyi D (2016) Zika (PRVABC59) infection is associated with T cell infiltration and neurodegeneration in CNS of immunocompetent neonatal C57Bl/6 mice. PLoS Pathog 12(11):e16004. https://doi.org/10.1371/journal.ppat.1006004. (PMID: 10.1371/journal.ppat.1006004)
Bai F, Kong KF, Dai J et al (2010) A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J Infect Dis 202(12):1804–1812. https://doi.org/10.1086/657416. (PMID: 10.1086/6574163053000)
Zhang L, Wang CC (2014) Inflammatory response of macrophages in infection. Hepatobiliary Pancreat Dis Int 13(2):138–152. https://doi.org/10.1016/s1499-3872(14)60024-2. (PMID: 10.1016/s1499-3872(14)60024-2)
Li H, Saucedo-Cuevas L, Regla-Nava JA, Chai G, Sheets N, Tang W, Terskikh AV, Shresta S, Gleeson JG (2016) Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19(5):593–598. https://doi.org/10.1016/j.stem.2016.08.005. (PMID: 10.1016/j.stem.2016.08.0055097023)
Tripathi S, Balasubramaniam VR, Brown JA, Mena I, Grant A, Bardina SV, Maringer K, Schwarz MC, Maestre AM, Sourisseau M, Albrecht RA, Krammer F, Evans MJ, Fernandez-Sesma A, Lim JK, García-Sastre A (2017) A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathog. 13(3):e1006258. https://doi.org/10.1371/journal.ppat.1006258. (PMID: 10.1371/journal.ppat.10062585373643)
Nazerai L, Schøller AS, Rasmussen POS, Buus S, Stryhn A, Christensen JP, Thomsen AR (2018) A new in vivo model to study protective immunity to zika virus infection in mice with intact type i interferon signaling. Front Immunol 9:593. https://doi.org/10.3389/fimmu.2018.00593. (PMID: 10.3389/fimmu.2018.005935874300)
Li S, Armstrong N, Zhao H, Hou W, Liu J, Chen C, Wan J, Wang W, Zhong C, Liu C, Zhu H, Xia N, Cheng T, Tang Q (2018) Zika virus fatally infects wild type neonatal mice and replicates in central nervous system. Viruses 10(1):49. https://doi.org/10.3390/v10010049. (PMID: 10.3390/v100100495795462)
Smith DR, Hollidge B, Daye S, Zeng X, Blancett C, Kuszpit K, Bocan T, Koehler JW, Coyne S, Minogue T, Kenny T, Chi X, Yim S, Miller L, Schmaljohn C, Bavari S, Golden JW (2017) Neuropathogenesis of zika virus in a highly susceptible immunocompetent mouse model after antibody blockade of type I interferon. PLoS Negl Trop Dis 11(1):e5296. https://doi.org/10.1371/journal.pntd.0005296. (PMID: 10.1371/journal.pntd.0005296)
Zukor K, Wang H, Siddharthan V, Julander JG, Morrey JD (2018) Zika virus-induced acute myelitis and motor deficits in adult interferon αβ/γ receptor knockout mice. J Neurovirol 24(3):273–290. https://doi.org/10.1007/s13365-017-0595-z. (PMID: 10.1007/s13365-017-0595-z5992253)
Azevedo RSS, Araujo MT, Oliveira CS, Filho AJM, Nunes BTD, Henriques DF, Silva EVP, Carvalho VL, Chiang JO, Martins LC, Vasconcelos BCB, Sousa JR, Araujo FMC, Ribeiro EM, Castro ARP, de Queiroz MGL, Verotti MP, Nunes MRT, Cruz ACR, Rodrigues SG, Shi PY, Quaresma JAS, Tesh RB, Vasconcelos PFC (2018) Zika virus epidemic in Brazil. II. Post-mortem analyses of neonates with microcephaly, stillbirths, and miscarriage. J Clin Med 7(12):496. https://doi.org/10.3390/jcm7120496. (PMID: 10.3390/jcm71204966306831)
Schultz V, Barrie JA, Donald CL, Crawford CL, Mullin M, Anderson TJ, Solomon T, Barnett SC, Linington C, Kohl A, Willison HJ, Edgar JM (2021) Oligodendrocytes are susceptible to Zika virus infection in a mouse model of perinatal exposure: implications for CNS complications. Glia 69(8):2023–2036. https://doi.org/10.1002/glia.24010. (PMID: 10.1002/glia.240109216243)
Noguchi KK, Swiney BS, Williams SL, Huffman JN, Lucas K, Wang SH, Kapral KM, Li A, Dikranian KT (2020) Zika virus infection in the developing mouse produces dramatically different neuropathology dependent on viral strain. J Neurosci 40(5):1145–1161. https://doi.org/10.1523/JNEUROSCI.1376-19.2019. (PMID: 10.1523/JNEUROSCI.1376-19.20196988996)
Li G, Bos S, Tsetsarkin KA, Pletnev AG, Desprès P, Gadea G, Zhao RY (2019) The roles of prM-E proteins in historical and epidemic zika virus-mediated infection and neurocytotoxicity. Viruses 11(2):157. https://doi.org/10.3390/v11020157. (PMID: 10.3390/v110201576409645)
Rosa-Fernandes L, Cugola FR, Russo FB, Kawahara R, de Melo Freire CC, Leite PEC, Bassi Stern AC, Angeli CB, de Oliveira DBL, Melo SR, Zanotto PMA, Durigon EL, Larsen MR, Beltrão-Braga PCB, Palmisano G (2019) Zika virus impairs neurogenesis and synaptogenesis pathways in human neural stem cells and neurons. Front Cell Neurosci 13:64. https://doi.org/10.3389/fncel.2019.00064. (PMID: 10.3389/fncel.2019.000646436085)
معلومات مُعتمدة: 14/2016 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
تواريخ الأحداث: Date Created: 20230119 Date Completed: 20230124 Latest Revision: 20230213
رمز التحديث: 20230214
DOI: 10.1007/s00705-022-05629-x
PMID: 36658439
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-8798
DOI:10.1007/s00705-022-05629-x