دورية أكاديمية

High-efficiency novel extraction process of target polyphenols using enzymes in hydroalcoholic media.

التفاصيل البيبلوغرافية
العنوان: High-efficiency novel extraction process of target polyphenols using enzymes in hydroalcoholic media.
المؤلفون: Piazza DM; Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina., Romanini D; Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina.; Facultad de Ciencias Bioquímicas Y Farmacéuticas, Departamento de Tecnología, UNR, Rosario, Argentina., Meini MR; Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina. meini@iprobyq-conicet.gob.ar.; Área Biofísica, Facultad de Ciencias Bioquímicas Y Farmacéuticas, UNR, Rosario, Argentina. meini@iprobyq-conicet.gob.ar.; IPROBYQ-CONICET, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Mitre 1998 - S2000FWF, Rosario, Santa Fe, Argentina. meini@iprobyq-conicet.gob.ar.
المصدر: Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2023 Feb; Vol. 107 (4), pp. 1205-1216. Date of Electronic Publication: 2023 Jan 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8406612 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0614 (Electronic) Linking ISSN: 01757598 NLM ISO Abbreviation: Appl Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer International, c1984-
مواضيع طبية MeSH: Polyphenols* , Cellulases*, Polygalacturonase ; Solvents ; Ethanol ; Plant Extracts ; Antioxidants
مستخلص: Agro-industrial by-products are a sustainable source of natural additives that can replace the synthetic ones in the food industry. Grape pomace is an abundant by-product that contains about 70% of the grape's polyphenols. Polyphenols are natural antioxidants with multiple health-promoting properties. They are secondary plant metabolites with a wide range of solubilities. Here, a novel extraction process of these compounds was developed using enzymes that specifically liberates target polyphenols in the appropriate hydroalcoholic mixture. Tannase, cellulase, and pectinase retained 22, 60, and 52% of their activity, respectively, in ethanol 30% v/v. Therefore, extractions were tested in ethanol concentrations between 0 and 30% v/v. Some of these enzymes presented synergistic effects in the extraction of specific polyphenols. Maximum yield of gallic acid was obtained using tannase and pectinase enzymes in ethanol 10% v/v (49.56 ± 0.01 mg L -1  h -1 ); in the case of p-coumaric acid, by cellulase and pectinase treatment in ethanol 30% v/v (7.72 ± 0.26 mg L -1  h -1 ), and in the case of trans-resveratrol, by pectinase treatment in ethanol 30% v/v (0.98 ± 0.04 mg L -1  h -1 ). Also, the effect of enzymes and solvent polarity was analysed for the extraction of malvidin-3-O-glucoside, syringic acid, and quercetin. Previous studies were mainly focused on the maximization of total polyphenols extraction yields, being the polyphenolic profile the consequence but not the driving force of the optimization. In the present study, the basis of a platform for a precise extraction of the desire polyphenols is provided. KEY POINTS: • Enzymes can be used up to ethanol 30% v/v. • The specific enzymes' action determines the polyphenolic profile of the extracts. • The yields obtained of target polyphenols are competitive.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875–877. https://doi.org/10.1038/nprot.2007.102. (PMID: 10.1038/nprot.2007.102)
Antoniolli A, Fontana AR, Piccoli P, Bottini R (2015) Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec Food Chem 178:172–178. https://doi.org/10.1016/j.foodchem.2015.01.082. (PMID: 10.1016/j.foodchem.2015.01.082)
Averilla JN, Oh J, Wu Z, Liu K, Jang CH, Kim HJ, Kim J, Kim J (2019) Improved extraction of resveratrol and antioxidants from grape peel using heat and enzymatic treatments. J Sci Food Agric 99:4043–4053. https://doi.org/10.1002/jsfa.9632. (PMID: 10.1002/jsfa.9632)
Badhani B, Sharma N, Kakkar R (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv 5:27540–27557. https://doi.org/10.1039/C5RA01911G. (PMID: 10.1039/C5RA01911G)
Beres C, Costa GNS, Cabezudo I, da Silva-James NK, Teles ASC, Cruz APG, Mellinger-Silva C, Tonon RV, Cabral LMC, Freitas SP (2017) Towards integral utilization of grape pomace from winemaking process: a review. Waste Manag 68:581–594. https://doi.org/10.1016/j.wasman.2017.07.017. (PMID: 10.1016/j.wasman.2017.07.017)
Borja GM, Rodriguez A, Campbell K, Borodina I, Chen Y, Nielsen J (2019) Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose. Microb Cell Fact 18:191. https://doi.org/10.1186/s12934-019-1244-4. (PMID: 10.1186/s12934-019-1244-4)
Brazinha C, Cadima M, Crespo JG (2014) Optimization of extraction of bioactive compounds from different types of grape pomace produced at wineries and distilleries. J Food Sci 79:E1142–E1149. https://doi.org/10.1111/1750-3841.12476. (PMID: 10.1111/1750-3841.12476)
Chamorro S, Viveros A, Alvarez I, Vega E, Brenes A (2012) Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chem 133:308–314. https://doi.org/10.1016/j.foodchem.2012.01.031. (PMID: 10.1016/j.foodchem.2012.01.031)
Devesa-Rey R, Vecino X, Varela-Alende JL, Barral MT, Cruz JM, Moldes AB (2011) Valorization of winery waste vs. the costs of not recycling. Waste Manag 31:2327–2335. https://doi.org/10.1016/j.wasman.2011.06.001. (PMID: 10.1016/j.wasman.2011.06.001)
Dwyer K, Hosseinian F, Rod M (2014) The market potential of grape waste alternatives. J Food Res 3:91. https://doi.org/10.5539/jfr.v3n2p91. (PMID: 10.5539/jfr.v3n2p91)
Fernández-Fernández AM, Iriondo-DeHond A, Dellacassa E, Medrano-Fernandez A, del Castillo MD (2019) Assessment of antioxidant, antidiabetic, antiobesity, and anti-inflammatory properties of a Tannat winemaking by-product. Eur Food Res Technol 245:1539–1551. https://doi.org/10.1007/s00217-019-03252-w. (PMID: 10.1007/s00217-019-03252-w)
Ferri M, Rondini G, Calabretta MM, Michelini E, Vallini V, Fava F, Roda A, Minnucci G, Tassoni A (2017) White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities. N Biotechnol 39:51–58. https://doi.org/10.1016/j.nbt.2017.07.002. (PMID: 10.1016/j.nbt.2017.07.002)
Fontana AR, Antoniolli A, Bottini R (2013) Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. J Agric Food Chem 61:8987–9003. https://doi.org/10.1021/jf402586f. (PMID: 10.1021/jf402586f)
Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126:1821–1835. https://doi.org/10.1016/j.foodchem.2010.12.026. (PMID: 10.1016/j.foodchem.2010.12.026)
Kammerer D, Claus A, Schieber A, Carle R (2005) A novel process for the recovery of polyphenols from grape (Vitis vinifera) pomace. J Food Sci 70:C157–C163. https://doi.org/10.1111/j.1365-2621.2005.tb07077.x. (PMID: 10.1111/j.1365-2621.2005.tb07077.x)
Kanpiengjai A, Khanongnuch C, Lumyong S, Haltrich D, Nguyen T-H, Kittibunchakul S (2020) Co-production of gallic acid and a novel cell-associated tannase by a pigment-producing yeast, Sporidiobolus ruineniae A45.2. Microb Cell Fact 19:95. https://doi.org/10.1186/s12934-020-01353-w.
Kuo C-H, Chen B-Y, Liu Y-C, Chen J-H, Shieh C-J (2016) Production of resveratrol by piceid deglycosylation using cellulase. Catalysts 6:32. https://doi.org/10.3390/catal6030032. (PMID: 10.3390/catal6030032)
Marco M-G, Rodríguez LV, Ramos EL, Renovato J (2009) A novel tannase from the xerophilic fungus Aspergillus niger GH1. J Microbiol Biotechnol 19:987–996. https://doi.org/10.4014/jmb.0811.615. (PMID: 10.4014/jmb.0811.615)
Martins IM, Roberto BS, Blumberg JB, Chen C-YO, Macedo GA (2016) Enzymatic biotransformation of polyphenolics increases antioxidant activity of red and white grape pomace. Food Res Int 89:533–539. https://doi.org/10.1016/j.foodres.2016.09.009. (PMID: 10.1016/j.foodres.2016.09.009)
Meini M-R, Cabezudo I, Boschetti CE, Romanini D (2019) Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chem 283:257–264. https://doi.org/10.1016/j.foodchem.2019.01.037. (PMID: 10.1016/j.foodchem.2019.01.037)
Meini M-R, Cabezudo I, Galetto CS, Romanini D (2021) Production of grape pomace extracts with enhanced antioxidant and prebiotic activities through solid-state fermentation by Aspergillus niger and Aspergillus oryzae. Food Biosci 42:101168. https://doi.org/10.1016/j.fbio.2021.101168.
Milke L, Aschenbrenner J, Marienhagen J, Kallscheuer N (2018) Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl Microbiol Biotechnol 102:1575–1585. https://doi.org/10.1007/s00253-018-8747-5. (PMID: 10.1007/s00253-018-8747-5)
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030. (PMID: 10.1021/ac60147a030)
Monteiro LMO, Pereira MG, Vici AC, Heinen PR, Buckeridge MS, de Polizeli M, LT de M, (2019) Efficient hydrolysis of wine and grape juice anthocyanins by Malbranchea pulchella β-glucosidase immobilized on MANAE-agarose and ConA-Sepharose supports. Int J Biol Macromol 136:1133–1141. https://doi.org/10.1016/j.ijbiomac.2019.06.106. (PMID: 10.1016/j.ijbiomac.2019.06.106)
Moro KIB, Bender ABB, da Silva LP, Penna NG (2021) Green extraction methods and microencapsulation technologies of phenolic compounds from grape pomace: a review. Food Bioprocess Technol 14:1407–1431. https://doi.org/10.1007/s11947-021-02665-4. (PMID: 10.1007/s11947-021-02665-4)
Nguyen HQ, Quyen DT (2012) Purification and properties of an endoglucanase from Aspergillus oryzae VTCC-F045. Austr J Basic Appl Sci 4:6217–6222.
Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2:270–278. https://doi.org/10.4161/oxim.2.5.9498. (PMID: 10.4161/oxim.2.5.9498)
Pham TH, Quyen DT, Nghiem NM (2012) Purification and properties of an endoglucanase from Aspergillus niger VTCC-F021. Turk J Biol 36:694–701.
Pinelo M, Arnous A, Meyer AS (2006) Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci Technol 17:579–590. https://doi.org/10.1016/j.tifs.2006.05.003. (PMID: 10.1016/j.tifs.2006.05.003)
Pino-García R del, Porrelli A, Rus-Fernández P, Segura-Carretero A, Curiel JA (2020) Identification, purification and characterization of a novel glycosidase (BgLm1) from Leuconostoc mesenteroides. LWT 122:108829. https://doi.org/10.1016/j.lwt.2019.108829.
Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30:37–44. https://doi.org/10.1016/j.tibtech.2011.06.014. (PMID: 10.1016/j.tibtech.2011.06.014)
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3. (PMID: 10.1016/S0891-5849(98)00315-3)
Reynolds A, Knox A, Di Profio F (2018) Evaluation of macerating pectinase enzyme activity under various temperature, pH and ethanol regimes. Beverages 4:10. https://doi.org/10.3390/beverages4010010. (PMID: 10.3390/beverages4010010)
Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887. https://doi.org/10.1021/jf026182t. (PMID: 10.1021/jf026182t)
Sharma S, Bhat TK, Dawra RK (2000) A spectrophotometric method for assay of tannase using Rhodanine. Anal Biochem 279:85–89. https://doi.org/10.1006/abio.1999.4405. (PMID: 10.1006/abio.1999.4405)
Sirohi R, Tarafdar A, Singh S, Negi T, Gaur VK, Gnansounou E, Bharathiraja B (2020) Green processing and biotechnological potential of grape pomace: current trends and opportunities for sustainable biorefinery. Bioresour Technol 314:123771. https://doi.org/10.1016/j.biortech.2020.123771.
Sri Harsha PSC, Gardana C, Simonetti P, Spigno G, Lavelli V (2013) Characterization of phenolics, in vitro reducing capacity and anti-glycation activity of red grape skins recovered from winemaking by-products. Bioresour Technol 140:263–268. https://doi.org/10.1016/j.biortech.2013.04.092. (PMID: 10.1016/j.biortech.2013.04.092)
Ueda JM, Pedrosa MC, Heleno SA, Carocho M, Ferreira ICFR, Barros L (2022) Food additives from fruit and vegetable by-products and bio-residues: a comprehensive review focused on sustainability. Sustainability 14:5212. https://doi.org/10.3390/su14095212. (PMID: 10.3390/su14095212)
Unterkofler J, Muhlack RA, Jeffery DW (2020) Processes and purposes of extraction of grape components during winemaking: current state and perspectives. Appl Microbiol Biotechnol 104:4737–4755. https://doi.org/10.1007/s00253-020-10558-3. (PMID: 10.1007/s00253-020-10558-3)
van Schie MMCH, Spöring J-D, Bocola M, Domínguez de María P, Rother D (2021) Applied biocatalysis beyond just buffers – from aqueous to unconventional media. Options and Guidelines Green Chem 23:3191–3206. https://doi.org/10.1039/D1GC00561H. (PMID: 10.1039/D1GC00561H)
Wang C, Liu X, Zhang M, Shao H, Zhang M, Wang X, Wang Q, Bao Z, Fan X, Li H (2019) Efficient enzyme-assisted extraction and conversion of polydatin to resveratrol from Polygonum cuspidatum using thermostable cellulase and immobilized β-glucosidase. Front Microbiol 10:445. https://doi.org/10.3389/fmicb.2019.00445. (PMID: 10.3389/fmicb.2019.00445)
Xavier Machado T de O, Portugal IBM, Padilha CV da S, Ferreira Padilha F, dos Santos Lima M (2021) New trends in the use of enzymes for the recovery of polyphenols in grape byproducts. J Food Biochem 45. https://doi.org/10.1111/jfbc.13712.
Xu F, Sun R-C, Sun J-X, Liu C-F, He B-H, Fan J-S (2005) Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal Chim Acta 552:207–217. https://doi.org/10.1016/j.aca.2005.07.037. (PMID: 10.1016/j.aca.2005.07.037)
Yuan S-F, Yi X, Johnston TG, Alper HS (2020) De novo resveratrol production through modular engineering of an Escherichia coli–Saccharomyces cerevisiae co-culture. Microb Cell Fact 19:143. https://doi.org/10.1186/s12934-020-01401-5. (PMID: 10.1186/s12934-020-01401-5)
Zhang G, Hu M, He L, Fu P, Wang L, Zhou J (2013) Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food Bioprod Process 91:158–168. https://doi.org/10.1016/j.fbp.2012.09.003. (PMID: 10.1016/j.fbp.2012.09.003)
Zhou J, Liang M, Lin Y, Pang H, Wei Y, Huang R, Du L (2022) Application of β-glucosidase in a biphasic system for the efficient conversion of polydatin to resveratrol. Molecules 27:1514. https://doi.org/10.3390/molecules27051514. (PMID: 10.3390/molecules27051514)
معلومات مُعتمدة: PICT 2020 SERIE A-00445 Fondo para la Investigación Científica y Tecnológica; PIP 11220200103120 Consejo Nacional de Investigaciones Científicas y Técnicas; DTT-2021-065 Agencia Santafesina de Ciencia, Tecnología e Innovación; 0020190100061 Universidad Nacional de Rosario
فهرسة مساهمة: Keywords: Enzymes; Gallic acid; Grape pomace; Polyphenols; Trans-Resveratrol; p-Coumaric acid
المشرفين على المادة: 0 (Polyphenols)
EC 3.2.1.15 (Polygalacturonase)
0 (Solvents)
3K9958V90M (Ethanol)
0 (Plant Extracts)
0 (Antioxidants)
EC 3.2.1.- (Cellulases)
تواريخ الأحداث: Date Created: 20230121 Date Completed: 20230207 Latest Revision: 20230207
رمز التحديث: 20240628
DOI: 10.1007/s00253-023-12386-7
PMID: 36680585
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0614
DOI:10.1007/s00253-023-12386-7