دورية أكاديمية

Genomic and physiological characterization of Novosphingobium terrae sp. nov., an alphaproteobacterium isolated from Cerrado soil containing a mega-sized chromid.

التفاصيل البيبلوغرافية
العنوان: Genomic and physiological characterization of Novosphingobium terrae sp. nov., an alphaproteobacterium isolated from Cerrado soil containing a mega-sized chromid.
المؤلفون: Belmok A; Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil. abelmokadias@gmail.com., de Almeida FM; Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil., Rocha RT; Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil., Vizzotto CS; Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Faculdade de Tecnologia, Universidade de Brasília, Brasilia, DF, Brazil.; Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil., Tótola MR; Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil., Ramada MHS; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil.; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasilia, DF, Brazil., Krüger RH; Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil., Kyaw CM; Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil. malta@unb.br., Pappas GJ Jr; Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil. gpappas@unb.br.
المصدر: Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Braz J Microbiol] 2023 Mar; Vol. 54 (1), pp. 239-258. Date of Electronic Publication: 2023 Jan 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Publishing Country of Publication: Brazil NLM ID: 101095924 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1678-4405 (Electronic) Linking ISSN: 15178382 NLM ISO Abbreviation: Braz J Microbiol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2019- : Switzerland, AG : Springer International Publishing
Original Publication: Rio de Janeiro, RJ, Brasil : Sociedade Brasileira de Microbiologia
مواضيع طبية MeSH: Phospholipids* , Soil*, RNA, Ribosomal, 16S/genetics ; Sequence Analysis, DNA ; DNA, Bacterial/genetics ; Ubiquinone/chemistry ; Ubiquinone/genetics ; Phylogeny ; Bacterial Typing Techniques ; Soil Microbiology ; Fatty Acids/chemistry ; Genomics
مستخلص: A novel bacterial strain, designated GeG2 T , was isolated from soils of the native Cerrado, a highly biodiverse savanna-like Brazilian biome. 16S rRNA gene analysis of GeG2 T revealed high sequence identity (100%) to the alphaproteobacterium Novosphingobium rosa; however, comparisons with N. rosa DSM 7285 T showed several distinctive features, prompting a full characterization of the new strain in terms of physiology, morphology, and, ultimately, its genome. GeG2 T cells were Gram-stain-negative bacilli, facultatively anaerobic, motile, positive for catalase and oxidase activities, and starch hydrolysis. Strain GeG2 T presented planktonic-sessile dimorphism and cell aggregates surrounded by extracellular matrix and nanometric spherical structures were observed, suggesting the production of exopolysaccharides (EPS) and outer membrane vesicles (OMVs). Despite high 16S rDNA identity, strain GeG2 T showed 90.38% average nucleotide identity and 42.60% digital DNA-DNA hybridization identity with N. rosa, below species threshold. Whole-genome assembly revealed four circular replicons: a 4.1 Mb chromosome, a 2.7 Mb extrachromosomal megareplicon, and two plasmids (212.7 and 68.6 kb). The megareplicon contains a few core genes and plasmid-type replication/maintenance systems, consistent with its classification as a chromid. Genome annotation shows a vast repertoire of carbohydrate-active enzymes and genes involved in the degradation of aromatic compounds, highlighting the biotechnological potential of the new isolate. Chemotaxonomic features, including polar lipid and fatty acid profiles, as well as physiological, molecular, and whole-genome comparisons showed significant differences between strain GeG2 T and N. rosa, indicating that it represents a novel species, for which the name Novosphingobium terrae is proposed. The type strain is GeG2 T (= CBMAI 2313 T  = CBAS 753  T ).
(© 2023. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.)
References: Takeuchi M, Sakane T, Yanagi M, Yamasato K, Hamana K, Yokota A (1995) Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45(2):334–341. https://doi.org/10.1099/00207713-45-2-334. (PMID: 10.1099/00207713-45-2-3347537068)
Kämpfer P, Young CC, Busse H, Lin SY, Rekha PD, Arun AB et al (2011) Novosphingobium soli sp. Nov., isolated from soil. Int J Syst Evol Microbiol. 61(Pt 2):259–263. https://doi.org/10.1099/ijs.0.022178-0. (PMID: 10.1099/ijs.0.022178-020207802)
Kämpfer P, Martin K, McInroy JA, Glaeser SP (2015) Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int J Syst Evol Microbiol 65(Pt 1):195–200. https://doi.org/10.1099/ijs.0.070375-0. (PMID: 10.1099/ijs.0.070375-025320143)
Lee JC, Kim SG, Whang KS (2014) Novosphingobium aquiterrae sp. nov., isolated from ground water. Int J Syst Evol Microbiol 64(Pt 9):3282–3287. https://doi.org/10.1099/ijs.0.060749-0. (PMID: 10.1099/ijs.0.060749-024994774)
Baek SH, Lim JH, Jin L, Lee HG, Lee ST (2011) Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. Int J Syst Evol Microbiol 61(Pt 10):2464–2468. https://doi.org/10.1099/ijs.0.024307-0. (PMID: 10.1099/ijs.0.024307-021097643)
Ngo HT, Trinh H, Kim JH, Yang JE, Won KH, Kim JH et al (2016) Novosphingobium lotistagni sp. nov., isolated from a lotus pond. Int J Syst Evol Microbiol 66(11):4729–4734. https://doi.org/10.1099/ijsem.0.001418. (PMID: 10.1099/ijsem.0.00141827515386)
Sheu SY, Chen ZH, Chen WM (2016) Novosphingobium piscinae sp. nov., isolated from a fish culture pond. Int J Syst Evol Microbiol 66(3):1539–1545. https://doi.org/10.1099/ijsem.0.000914. (PMID: 10.1099/ijsem.0.00091426801217)
Yuan J, Lai Q, Zheng T, Shao Z (2009) Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol 59(Pt 8):2084–2088. https://doi.org/10.1099/ijs.0.002873-0. (PMID: 10.1099/ijs.0.002873-019605709)
Huo YY, You H, Li ZY, Wang CS, Xu XW (2015) Novosphingobium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 65(Pt 2):676–80. https://doi.org/10.1099/ijs.0.070433-0. (PMID: 10.1099/ijs.0.070433-025424486)
Lee LH, Azman AS, Zainal N, Eng SK, Fang CM, Hong K, Chan KG (2014) Novosphingobium malaysiense sp. nov. isolated from mangrove sediment. Int J Syst Evol Microbiol 64(pt4):1194–1201. https://doi.org/10.1099/ijs.0.059014-0. (PMID: 10.1099/ijs.0.059014-024408529)
Tiirola MA, Busse HJ, Kämpfer P, Männistö MK (2005) Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 55(Pt 2):583–588. https://doi.org/10.1099/ijs.0.63386-0. (PMID: 10.1099/ijs.0.63386-015774628)
Kämpfer P, Busse HJ, Glaeser SP (2018) Novosphingobium lubricantis sp. nov., isolated from a coolant lubricant emulsion. Int J Syst Evol Microbiol 68(5):1560–1564. https://doi.org/10.1099/ijsem.0.002702. (PMID: 10.1099/ijsem.0.00270229561253)
Glaeser SP, and Kämpfer P (2014) The family Sphingomonadaceae. In: The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_302.
Wu M, Huang H, Li G, Ren Y, Shi Z, Xiaoyan L et al (2017) The evolutionary life cycle of the polysaccharide biosynthetic gene cluster based on the Sphingomonadaceae. Sci Rep 7:46484. https://doi.org/10.1038/srep46484. (PMID: 10.1038/srep46484284297315399355)
Hegedűs B, Kós PB, Bálint B, Maróti G, Gan HM et al (2017) Complete genome sequence of Novosphingobium resinovorum SA1, a versatile xenobiotic-degrading bacterium capable of utilizing sulfanilic acid. J Biotechnol 241:76–80. https://doi.org/10.1016/j.jbiotec.2016.11.013. (PMID: 10.1016/j.jbiotec.2016.11.01327851894)
Sheu SY, Huang CW, Chen JC, Chen ZH, Chen WM (2018) Novosphingobium arvoryzae sp. nov., isolated from a flooded rice field. Int J Syst Evol Microbiol 68:2151–2157. https://doi.org/10.1099/ijsem.0.002756. (PMID: 10.1099/ijsem.0.00275629775177)
Wang J, Wang C, Li J, Bai P, Li Q, Shen M et al (2018) Comparative genomics of degradative Novosphingobium strains with special reference to microcystin-degrading Novosphingobium sp. THN1. Front Microbiol 9:2238. https://doi.org/10.3389/fmicb.2018.02238. (PMID: 10.3389/fmicb.2018.02238303195676167471)
Harrison PW, Lower RP, Kim NK, Young JP (2010) Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 18(4):141–148. https://doi.org/10.1016/j.tim.2009.12.010. (PMID: 10.1016/j.tim.2009.12.01020080407)
Lane DJ (1991) 16S/23S rRNA sequencing in nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp 115–175.
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755. (PMID: 10.1099/ijsem.0.001755280055265563544)
Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. Methods for General and Molecular Bacteriology, 3rd edn. American Society for Microbiology, Washington DC, pp 330–393.
Blume LR, Noronha EF, Leite J et al (2013) Characterization of Clostridium thermocellum isolates grown on cellulose and sugarcane bagasse. Bioenerg Res 6:763–775. https://doi.org/10.1007/s12155-013-9295-6. (PMID: 10.1007/s12155-013-9295-6)
Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496. https://doi.org/10.1093/ajcp/45.4_ts.493. (PMID: 10.1093/ajcp/45.4_ts.4935325707)
Sha S, Zhong J, Chen B, Lin L, Luan T (2017) Novosphingobium guangzhouense sp. nov., with the ability to degrade 1-methylphenanthrene. Int J Syst Evol Microbiol 67(2):489–497. https://doi.org/10.1099/ijsem.0.001669. (PMID: 10.1099/ijsem.0.00166927902280)
Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Tech Note (MIDI Newark Delaware) 101:1–7.
Tindall BJ (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130. https://doi.org/10.1016/S0723-2020(11)80158-X. (PMID: 10.1016/S0723-2020(11)80158-X)
Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Letts 66:199–202. https://doi.org/10.1016/0378-1097(90)90282-U. (PMID: 10.1016/0378-1097(90)90282-U)
Agustini BC, Silva LP, Bloch C Jr, Bonfim TM, da Silva GA (2014) Evaluation of MALDI-TOF mass spectrometry for identification of environmental yeasts and development of supplementary database. Appl Microbiol Biotechnol 98:5645–5654. https://doi.org/10.1007/s00253-014-5686-7. (PMID: 10.1007/s00253-014-5686-724687751)
Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M, Sentausa E et al (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64:384–391. https://doi.org/10.1099/ijs.0.057091-0. (PMID: 10.1099/ijs.0.057091-024505076)
Souza W (2007) Técnicas de microscopia eletrônica aplicadas às ciências biológicas. 3a edição. Sociedade Brasileira de Microscopia, Rio de Janeiro.
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30(5):614–620. https://doi.org/10.1093/bioinformatics/btt593. (PMID: 10.1093/bioinformatics/btt59324142950)
Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PloS Comput. Biol 13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595. (PMID: 10.1371/journal.pcbi.1005595285948275481147)
Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086. (PMID: 10.1093/bioinformatics/btt086234223393624806)
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G et al (2018) BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 35(3):543–548. https://doi.org/10.1093/molbev/msx319. (PMID: 10.1093/molbev/msx31929220515)
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2014) CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114. (PMID: 10.1101/gr.186072.114)
Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25(1):119–120. https://doi.org/10.1093/bioinformatics/btn578. (PMID: 10.1093/bioinformatics/btn57818990721)
Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. https://doi.org/10.1038/s41467-019-10210-3. (PMID: 10.1038/s41467-019-10210-3310977086522516)
Ha SM, Kim CK, Roh J, Byun JH, Yang SJ, Choi SB et al (2019) Application of the whole genome-based bacterial identification system, TrueBac ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann Lab Med 39(6):530–536. https://doi.org/10.3343/alm.2019.39.6.530. (PMID: 10.3343/alm.2019.39.6.530312408806660342)
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9(1):5114. https://doi.org/10.1038/s41467-018-07641-9. (PMID: 10.1038/s41467-018-07641-9305048556269478)
Avram O, Rapoport D, Portugez S, Pupko T (2019) M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucl Acids Res 47:W88–W92. https://doi.org/10.1093/nar/gkz423. (PMID: 10.1093/nar/gkz423311149126602433)
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5(2):R12. https://doi.org/10.1186/gb-2004-5-2-r12. (PMID: 10.1186/gb-2004-5-2-r1214759262395750)
Yin T, Cook D, Lawrence M (2012) ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol 13(8):R77. https://doi.org/10.1186/gb-2012-13-8-r77. (PMID: 10.1186/gb-2012-13-8-r77229378224053745)
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153. (PMID: 10.1093/bioinformatics/btu15324642063)
Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H (2020) KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36(7):2251–2252. https://doi.org/10.1093/bioinformatics/. (PMID: 10.1093/bioinformatics/31742321)
Krawczyk PS, Lipinski L, Dziembowski A (2018) PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res 46(6):e35. https://doi.org/10.1093/nar/gkx1321. (PMID: 10.1093/nar/gkx1321293465865887522)
diCenzo GC, Finan TM (2017) The divided bacterial genome: structure, function, and evolution. Microbiol Mol Biol Rev 81(3):e00019-e117. https://doi.org/10.1128/MMBR.00019-17. (PMID: 10.1128/MMBR.00019-17287942255584315)
Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 34(8):2115–2122. https://doi.org/10.1093/molbev/msx148. (PMID: 10.1093/molbev/msx148284601175850834)
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484. https://doi.org/10.1093/nar/gkm882. (PMID: 10.1093/nar/gkm88218077471)
Zhang H, Yohe T, Huang L et al (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46(W1):W95–W101. https://doi.org/10.1093/nar/gky418. (PMID: 10.1093/nar/gky418297713806031026)
Alves-Prado HF, Pavezzi FC, de Leite RS, Oliveira VM, Sette LD, Dasilva R (2010) Screening and production study of microbial xylanase producers from Brazilian Cerrado. Appl Biochem Biotechnol 161(1–8):333–346. https://doi.org/10.1007/s12010-009-8823-5. (PMID: 10.1007/s12010-009-8823-519898784)
Peixoto J, Silva LP, Krüger RH (2017) Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater 324(Pt B):634–644. https://doi.org/10.1016/j.jhazmat.2016.11.037. (PMID: 10.1016/j.jhazmat.2016.11.03727889181)
Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42(1):166–170. https://doi.org/10.1099/00207713-42-1-166S. (PMID: 10.1099/00207713-42-1-166S1371061)
Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44(4):846–849. https://doi.org/10.1099/00207713-44-4-846. (PMID: 10.1099/00207713-44-4-846)
Jaspers E, Overmann J (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70(8):4831–4839. https://doi.org/10.1128/AEM.70.8.4831-4839.2004. (PMID: 10.1128/AEM.70.8.4831-4839.200415294821492463)
Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68(1):461–466. https://doi.org/10.1099/ijsem.0.002516. (PMID: 10.1099/ijsem.0.00251629292687)
Raina V, Nayak T, Ray L, Kumari K, Suar M (2019) Approach for designation and description of novel microbial species. Microbial diversity in the genomic era. Elsevier, India, pp 137–152. (PMID: 10.1016/B978-0-12-814849-5.00009-5)
Choi DH, Kwon YM, Kwon KK, Kim SJ (2015) Complete genome sequence of Novosphingobium pentaromativorans US6-1(T). Stand Genomic Sci 2015(10):107. https://doi.org/10.1186/s40793-015-0102-1. (PMID: 10.1186/s40793-015-0102-1)
Troncone L (2011) A study of the biotechnological applications of Novosphingobium puteolanum PP1Y. PhD thesis. Università di Napoli Federico II, Naples, Italy.
Haridasan M (2008) Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz J Plant Physiol 20(3):183–195. https://doi.org/10.1590/S1677-04202008000300003. (PMID: 10.1590/S1677-04202008000300003)
Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Intern J System Bacteriol 51(Pt 4):1405–1417. https://doi.org/10.1099/00207713-51-4-1405. (PMID: 10.1099/00207713-51-4-1405)
Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ (2004) Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54(Pt 5):1483–1487. https://doi.org/10.1099/ijs.0.02945-0. (PMID: 10.1099/ijs.0.02945-015388699)
Sheu SY, Cai CY, Kwon SW, Chen WM (2020) Novosphingobium umbonatum sp. nov., isolated from a freshwater mesocosm. Int J Syst Evol Microbiol 70(2):1122–1132. https://doi.org/10.1099/ijsem.0.003889. (PMID: 10.1099/ijsem.0.00388931804916)
Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I, Ogura H, Kobayashi K (2002) Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 52(Pt 5):1485–1496. https://doi.org/10.1099/00207713-52-5-1485. (PMID: 10.1099/00207713-52-5-148512361250)
Dantas G, Sommer MO, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320(5872):100–103. https://doi.org/10.1126/science.1155157. (PMID: 10.1126/science.115515718388292)
Glaeser SP, Bolte K, Martin K, Busse HJ, Grossart HP, Kämpfer P, Glaeser J (2013) Novosphingobium fuchskuhlense sp. nov., isolated from the north-east basin of Lake Grosse Fuchskuhle. Int J Syst Evol Microbiol 63(Pt 2):586–592. https://doi.org/10.1099/ijs.0.043083-0. (PMID: 10.1099/ijs.0.043083-022544783)
Kämpfer P, Denner EB, Meyer S, Moore ER, Busse HJ (1997) Classification of “Pseudomonas azotocolligans” in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583. https://doi.org/10.1099/00207713-47-2-577. (PMID: 10.1099/00207713-47-2-5779103654)
Busse HJ, Kämpfer P, Denner EB (1999) Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 23(4–5):242–251. https://doi.org/10.1038/sj.jim.2900745. (PMID: 10.1038/sj.jim.290074511423940)
Docampo R (2006) Acidocalcisomes and polyphosphate granules. In: Inclusions in Prokaryotes - Microbiology Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33774-1_3.
Frank C, Jendrossek D (2020) Acidocalcisomes and polyphosphate granules are different subcellular structures in Agrobacterium tumefaciens. Appl Environ Microbiol 86(8):e02759-e2819. https://doi.org/10.1128/AEM.02759-19. (PMID: 10.1128/AEM.02759-19320600257117937)
Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 23(9):1636. https://doi.org/10.3389/fmicb.2018.01636. (PMID: 10.3389/fmicb.2018.01636)
Li Y, Shi X, Ling Q, Li S, Wei J, Xin M, Xie D, Chen X, Liu K, Yu F (2022) Bacterial extracellular polymeric substances: impact on soil microbial community composition and their potential role in heavy metal-contaminated soil. Ecotoxicol Environ Saf 240:113701. (PMID: 10.1016/j.ecoenv.2022.11370135636237)
Gilewicz M, Ni’matuzahroh, Nadalig T, Budzinski H, Doumenq P, Michotey V et al (1997) Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene. Appl Microbiol Biotechnol 48:528–533. https://doi.org/10.1007/s002530051091. (PMID: 10.1007/s0025300510919445537)
Coppotelli BM, Ibarrolaza A, Dias RL, Del Panno MT, Berthe-Corti L, Morelli IS (2010) Study of the degradation activity and the strategies to promote the bioavailability of phenanthrene by Sphingomonas paucimobilis strain 20006FA. Microb Ecol 59(2):266–276. https://doi.org/10.1007/s00248-009-9563-3. (PMID: 10.1007/s00248-009-9563-319609598)
Toyofuku M, Nomura N, Eberl L (2019) Types and origins of bacterial membrane vesicles. Nat Rev Microbiol 17:13–24. https://doi.org/10.1038/s41579-018-0112-2. (PMID: 10.1038/s41579-018-0112-230397270)
Choi CW, Park EC, Yun SH, Lee SY, Lee YG, Hong Y et al (2014) Proteomic characterization of the outer membrane vesicle of Pseudomonas putida KT2440. J Proteome Res 13(10):4298–4309. https://doi.org/10.1021/pr500411d. (PMID: 10.1021/pr500411d25198519)
Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13(10):605–619. https://doi.org/10.1038/nrmicro3525. (PMID: 10.1038/nrmicro3525263733715308417)
Yun SH, Lee SY, Choi CW, Lee H, Ro HJ, Jun S et al (2017) Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1. J Microbiol 55(1):56–62. https://doi.org/10.1007/s12275-017-6581-6. (PMID: 10.1007/s12275-017-6581-628035602)
De Lise F, Mensitieri F, Rusciano G, Dal Piaz F, Forte G, Di Lorenzo F et al (2019) Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles. J Microbiol 57(6):498–508. https://doi.org/10.1007/s12275-019-8483-2. (PMID: 10.1007/s12275-019-8483-231054137)
Pollock T, Armentrout R (1999) Planktonic/sessile dimorphism of polysaccharide-encapsulated sphingomonads. J Ind Microbiol Biotech 23:436–441. https://doi.org/10.1038/sj.jim.2900710. (PMID: 10.1038/sj.jim.2900710)
Tiirola MA, Männistö MK, Puhakka JA, Kulomaa MS (2002) Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 68(1):173–180. https://doi.org/10.1128/aem.68.1.173-180.2002. (PMID: 10.1128/aem.68.1.173-180.200211772624126562)
Notomista E, Pennacchio F, Cafaro V, Smaldone G, Izzo V, Troncone L et al (2011) The marine isolate Novosphingobium sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source. Microb Ecol 61(3):582–594. https://doi.org/10.1007/s00248-010-9786-3. (PMID: 10.1007/s00248-010-9786-321258788)
Goutx M, Mutaftshiev S, Bertrand J (1987) Lipid and exopolysaccharide production during hydrocarbon growth of a marine bacterium from the sea surface. Mar Ecol Prog Ser 40(3):259–265. https://doi.org/10.3354/meps040259. (PMID: 10.3354/meps040259)
Husain DR, Goutx M, Bezac C, Gilewicz M, Bertrand J-C (1997) Morphological adaptation of Pseudomonas nautica strain 617 to growth on eicosane and modes of eicosane uptake. Letters Appl Microbiol 24:55–58. https://doi.org/10.1046/j.1472-765X.1997.00345.x. (PMID: 10.1046/j.1472-765X.1997.00345.x)
Gogoleva NE, Nikolaichik YA, Ismailov TT, Gorshkov VY, Safronova VI, Belimov AA, Gogolev Y (2019) Complete genome sequence of the abscisic acid-utilizing strain Novosphingobium sp. P6W. 3 Biotech 9(3):94. https://doi.org/10.1007/s13205-019-1625-8. (PMID: 10.1007/s13205-019-1625-8308006056385066)
Mackenzie C, Choudhary M, Larimer FW, Predki PF, Stilwagen S, Armitage JP et al (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70(1):19–41. https://doi.org/10.1023/A:1013831823701. (PMID: 10.1023/A:101383182370116228360)
Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103(42):15280–15287. https://doi.org/10.1073/pnas.0606924103. (PMID: 10.1073/pnas.0606924103170307971622818)
Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A et al (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5(5):e10433. https://doi.org/10.1371/journal.pone.0010433. (PMID: 10.1371/journal.pone.0010433204639762864759)
Frank O, Göker M, Pradella S, Petersen J (2015) Ocean’s twelve: flagellar and biofilm chromids in the multipartite genome of Marinovum algicola DG898 exemplify functional compartmentalization. Environ Microbiol 17:4019–4034. https://doi.org/10.1111/1462-2920.12947. (PMID: 10.1111/1462-2920.1294726079637)
Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA, Goodwin LA et al (2013) Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 79(12):3724–3733. https://doi.org/10.1128/AEM.00518-13. (PMID: 10.1128/AEM.00518-13235639543675938)
Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69(12):1555–1623. https://doi.org/10.2165/11317030-000000000-00000. (PMID: 10.2165/11317030-000000000-00000196787122847397)
Zheng J, Guan Z, Cao S, Peng D, Ruan L, Jiang D, Sun M (2015) Plasmids are vectors for redundant chromosomal genes in the Bacillus cereus group. BMC Genomics 16(1):6. https://doi.org/10.1186/s12864-014-1206-5. (PMID: 10.1186/s12864-014-1206-5256087454326196)
Suzuki Y, Nishijima S, Furuta Y, Yoshimura J, Suda W, Oshima K et al (2019) Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut. Microbiome 7(1):119. https://doi.org/10.1186/s40168-019-0737-z. (PMID: 10.1186/s40168-019-0737-z314554066712665)
D’Argenio V, Notomista E, Petrillo M, Cantiello P, Cafaro V, Izzo V et al (2014) Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern. BMC Genomics 15(1):384. https://doi.org/10.1186/1471-2164-15-384. (PMID: 10.1186/1471-2164-15-384248845184059872)
Nguyen STC, Freund HL, Kasanjian J, Berlemont R (2018) Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy. Appl Microbiol Biotechnol 102(4):1629–1637. https://doi.org/10.1007/s00253-018-8778-y. (PMID: 10.1007/s00253-018-8778-y293592695806127)
Manzanares P, Vallés S, Ramòn D, Orejas M (2007) α-L-rhamnosidases: old and new insights. In: Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_8.
De Lise F, Mensitieri F, Tarallo V, Ventimiglia N, Vinciguerra R, Tramice A et al (2016) RHA-P. Isolation, expression and characterization of a bacterial α-l-rhamnosidase from Novosphingobium sp. PP1Y. J Mol Catalysis B: Enzymatic 134:136–147. https://doi.org/10.1016/j.molcatb.2016.10.002. (PMID: 10.1016/j.molcatb.2016.10.002)
Wang J, Salem DR, Sani RK (2019) Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and applications. Carbohydr Polym 205:8–26. https://doi.org/10.1016/j.carbpol.2018.10.011. (PMID: 10.1016/j.carbpol.2018.10.01130446151)
Deo D, Davray D, Kulkarni R (2019) A diverse repertoire of exopolysaccharide biosynthesis gene clusters in lactobacillus revealed by comparative analysis in 106 sequenced genomes. Microorganisms 7(10):444. https://doi.org/10.3390/microorganisms7100444. (PMID: 10.3390/microorganisms7100444316146936843789)
Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16(2):29R-37R. https://doi.org/10.1093/glycob/cwj016. (PMID: 10.1093/glycob/cwj01616037492)
Kumar R, Verma H, Heider S, Bajaj A, Sood U, Ponnusamy K et al (2017) Comparative genomic analysis reveals habitat-specific genes and regulatory hubs within the genus Novosphingobium. mSystems 2:e00020-17. https://doi.org/10.1128/mSystems.00020-17. (PMID: 10.1128/mSystems.00020-17285674475443232)
Wallden K, Rivera-Calzada A, Waksman G (2010) Type IV secretion systems: versatility and diversity in function. Cell Microbiol 12(9):1203–1212. https://doi.org/10.1111/j.1462-5822.2010.01499.x. (PMID: 10.1111/j.1462-5822.2010.01499.x206427983070162)
Fischer W, Tegtmeyer N, Stingl K, Backert S (2020) Four chromosomal type IV secretion systems in Helicobacter pylori: composition, structure and function. Front Microbiol 11:1592. https://doi.org/10.3389/fmicb.2020.01592. (PMID: 10.3389/fmicb.2020.01592327541407366825)
Alegria MC, Souza DP, Andrade MO, Docena C, Khater L, Ramos CH et al (2005) Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. J Bacteriol 187:2315–2325. https://doi.org/10.1128/JB.187.7.2315-2325.2005. (PMID: 10.1128/JB.187.7.2315-2325.2005157748741065226)
Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC et al (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103(5):1528–1533. https://doi.org/10.1073/pnas.0510322103. (PMID: 10.1073/pnas.0510322103164321991345711)
Coulthurst S (2019) The type VI secretion system: a versatile bacterial weapon. Microbiology 165(5):503–515. https://doi.org/10.1099/mic.0.000789. (PMID: 10.1099/mic.0.00078930893029)
Ladino-Orjuela G, Gomes E, da Silva R, Salt C, Parsons JR (2016) Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. In: Reviews of Environmental Contamination and Toxicology Volume 237, Springer, Cham. https://doi.org/10.1007/978-3-319-23573-8_5.
Saxena A, Anand S, Dua A, Sangwan N, Khan F, Lal R (2013) Novosphingobium lindaniclasticum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 63(Pt 6):2160–2167. https://doi.org/10.1099/ijs.0.045443-0. (PMID: 10.1099/ijs.0.045443-023104365)
فهرسة مساهمة: Keywords: Cerrado; Chromid; Cultivation; Novosphingobium; Soils; Sphingomonadales
المشرفين على المادة: 0 (Phospholipids)
0 (Soil)
0 (RNA, Ribosomal, 16S)
0 (DNA, Bacterial)
1339-63-5 (Ubiquinone)
0 (Fatty Acids)
تواريخ الأحداث: Date Created: 20230126 Date Completed: 20230224 Latest Revision: 20240305
رمز التحديث: 20240305
مُعرف محوري في PubMed: PMC9944591
DOI: 10.1007/s42770-022-00900-4
PMID: 36701110
قاعدة البيانات: MEDLINE
الوصف
تدمد:1678-4405
DOI:10.1007/s42770-022-00900-4