دورية أكاديمية

Intramolecular Charge Transfer and Ultrafast Nonradiative Decay in DNA-Tethered Asymmetric Nitro- and Dimethylamino-Substituted Squaraines.

التفاصيل البيبلوغرافية
العنوان: Intramolecular Charge Transfer and Ultrafast Nonradiative Decay in DNA-Tethered Asymmetric Nitro- and Dimethylamino-Substituted Squaraines.
المؤلفون: Wright ND, Huff JS, Barclay MS, Wilson CK, Barcenas G, Duncan KM, Ketteridge M, Obukhova OM; SSI 'Institute for Single Crystals' of the National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine., Krivoshey AI; SSI 'Institute for Single Crystals' of the National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine., Tatarets AL; SSI 'Institute for Single Crystals' of the National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine., Terpetschnig EA; SETA BioMedicals, Urbana, Illinois 61801, United States., Dean JC; Department of Physical Science, Southern Utah University, Cedar City, Utah 84720, United States., Knowlton WB, Yurke B, Li L; Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States., Mass OA, Davis PH; Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States., Lee J, Turner DB, Pensack RD
المصدر: The journal of physical chemistry. A [J Phys Chem A] 2023 Feb 09; Vol. 127 (5), pp. 1141-1157. Date of Electronic Publication: 2023 Jan 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 9890903 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-5215 (Electronic) Linking ISSN: 10895639 NLM ISO Abbreviation: J Phys Chem A Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Washington, D.C. : American Chemical Society, c1997-
مستخلص: Molecular (dye) aggregates are a materials platform of interest in light harvesting, organic optoelectronics, and nanoscale computing, including quantum information science (QIS). Strong excitonic interactions between dyes are key to their use in QIS; critically, properties of the individual dyes govern the extent of these interactions. In this work, the electronic structure and excited-state dynamics of a series of indolenine-based squaraine dyes incorporating dimethylamino (electron donating) and/or nitro (electron withdrawing) substituents, so-called asymmetric dyes, were characterized. The dyes were covalently tethered to DNA Holliday junctions to suppress aggregation and permit characterization of their monomer photophysics. A combination of density functional theory and steady-state absorption spectroscopy shows that the difference static dipole moment (Δ d ) successively increases with the addition of these substituents while simultaneously maintaining a large transition dipole moment (μ). Steady-state fluorescence and time-resolved absorption and fluorescence spectroscopies uncover a significant nonradiative decay pathway in the asymmetrically substituted dyes that drastically reduces their excited-state lifetime (τ). This work indicates that Δ d can indeed be increased by functionalizing dyes with electron donating and withdrawing substituents and that, in certain classes of dyes such as these asymmetric squaraines, strategies may be needed to ensure long τ, e.g., by rigidifying the π-conjugated network.
References: Org Biomol Chem. 2012 Dec 7;10(45):8944-7. (PMID: 23076304)
RSC Adv. 2021 May 26;11(31):19029-19040. (PMID: 35478639)
J Phys Chem B. 2016 Sep 1;120(34):8845-62. (PMID: 27490865)
Chem Sci. 2018 Jun 1;9(29):6240-6259. (PMID: 30090312)
Science. 2013 Mar 8;339(6124):1169-74. (PMID: 23471399)
Phys Chem Chem Phys. 2011 Sep 7;13(33):15182-8. (PMID: 21769358)
J Am Chem Soc. 2006 Mar 15;128(10):3335-45. (PMID: 16522115)
Chem Phys. 2008 Aug 22;357(1-3):79-84. (PMID: 20617102)
Phys Chem Chem Phys. 2021 Jul 21;23(28):15196-15208. (PMID: 34231586)
J Phys Chem Lett. 2022 Mar 31;13(12):2782-2791. (PMID: 35319215)
Chem Sci. 2019 Nov 18;11(2):456-466. (PMID: 34084345)
J Phys Chem Lett. 2020 May 21;11(10):4163-4172. (PMID: 32391695)
Chem Commun (Camb). 2013 Jun 11;49(46):5298-300. (PMID: 23636273)
ACS Nano. 2019 Mar 26;13(3):2986-2994. (PMID: 30758934)
J Phys Chem A. 2016 Dec 22;120(50):9941-9947. (PMID: 27934475)
J Phys Chem C Nanomater Interfaces. 2022 Oct 13;126(40):17164-17175. (PMID: 36268205)
Nat Mater. 2018 Feb;17(2):159-166. (PMID: 29180771)
Org Lett. 2011 Mar 4;13(5):1162-5. (PMID: 21306133)
J Am Chem Soc. 2004 Jul 14;126(27):8535-9. (PMID: 15238011)
ACS Sens. 2017 Aug 25;2(8):1205-1214. (PMID: 28787151)
Nat Nanotechnol. 2014 Dec;9(12):981-5. (PMID: 25305743)
ACS Omega. 2019 Sep 04;4(12):14669-14679. (PMID: 31552306)
J Chem Phys. 2022 Jan 28;156(4):045101. (PMID: 35105081)
J Org Chem. 2022 Jun 3;87(11):7319-7332. (PMID: 35588394)
Chem Rev. 2003 Oct;103(10):3899-4032. (PMID: 14531716)
J Am Chem Soc. 2006 May 10;128(18):6024-5. (PMID: 16669657)
J Phys Chem Lett. 2016 Jul 7;7(13):2370-5. (PMID: 27281713)
J Chem Phys. 2018 Feb 28;148(8):085101. (PMID: 29495791)
ACS Photonics. 2015 Mar 18;2(3):398-404. (PMID: 25839049)
J Org Chem. 2011 Oct 7;76(19):8015-21. (PMID: 21859088)
Nature. 2019 Oct;574(7779):505-510. (PMID: 31645734)
Chem Rev. 2010 Nov 10;110(11):6736-67. (PMID: 20063869)
J Am Chem Soc. 2009 Sep 16;131(36):13099-106. (PMID: 19691345)
Nano Lett. 2012 Apr 11;12(4):2117-22. (PMID: 22401838)
Anal Biochem. 1994 Mar;217(2):197-204. (PMID: 8203747)
ACS Appl Mater Interfaces. 2012 Jun 27;4(6):2847-54. (PMID: 22591003)
Angew Chem Int Ed Engl. 2021 May 17;60(21):11949-11958. (PMID: 33751763)
J Chem Theory Comput. 2021 Feb 9;17(2):1117-1132. (PMID: 33492950)
Nature. 2008 Jun 19;453(7198):1031-42. (PMID: 18563154)
J Chem Phys. 2019 Sep 28;151(12):124503. (PMID: 31575193)
J Phys Chem C Nanomater Interfaces. 2022 Feb 24;126(7):3475-3488. (PMID: 35242270)
J Phys Chem B. 2020 Oct 29;124(43):9636-9647. (PMID: 33052691)
Science. 1997 May 23;276(5316):1233-6. (PMID: 9157876)
Commun Chem. 2021 Feb 18;4(1):19. (PMID: 36697509)
Acc Chem Res. 2014 Jun 17;47(6):1816-24. (PMID: 24849225)
Biophys J. 1983 Nov;44(2):201-9. (PMID: 6197102)
Methods Appl Fluoresc. 2016 Nov 11;4(4):045001. (PMID: 28192304)
J Phys Chem B. 2018 May 17;122(19):5020-5029. (PMID: 29698610)
Biochim Biophys Acta. 2004 Jul 9;1657(2-3):82-104. (PMID: 15238266)
J Phys Chem B. 2022 Jun 2;126(21):3897-3907. (PMID: 35584210)
J Am Chem Soc. 2006 Nov 15;128(45):14444-5. (PMID: 17090012)
Nature. 2006 Mar 16;440(7082):297-302. (PMID: 16541064)
ACS Omega. 2022 Mar 22;7(13):11002-11016. (PMID: 35415341)
Science. 2013 Feb 15;339(6121):791-4. (PMID: 23413349)
J Am Chem Soc. 2005 Mar 9;127(9):3156-64. (PMID: 15740155)
J Am Chem Soc. 2021 Sep 29;143(38):15508-15529. (PMID: 34533930)
Phys Chem Chem Phys. 2020 Feb 7;22(5):3048-3057. (PMID: 31960856)
Nat Mater. 2006 Sep;5(9):683-96. (PMID: 16946728)
Phys Chem Chem Phys. 2016 Jun 28;18(24):16404-13. (PMID: 27264847)
Nat Chem. 2016 Dec;8(12):1120-1125. (PMID: 27874873)
Chem Rev. 2017 Aug 23;117(16):10826-10939. (PMID: 27957848)
J Phys Chem A. 2021 Nov 11;125(44):9632-9644. (PMID: 34709821)
Acc Chem Res. 2009 Dec 21;42(12):1890-8. (PMID: 19902921)
Angew Chem Int Ed Engl. 2017 Jun 19;56(26):7520-7524. (PMID: 28524354)
Molecules. 2021 Jan 20;26(3):. (PMID: 33498306)
J Phys Chem B. 2020 Sep 17;124(37):8042-8049. (PMID: 32706583)
Science. 2006 Oct 13;314(5797):281-5. (PMID: 16973839)
Chemistry. 2008;14(35):11082-91. (PMID: 18972462)
J Fluoresc. 2010 Nov;20(6):1241-8. (PMID: 20473711)
J Chem Phys. 2020 Jan 7;152(1):014503. (PMID: 31914753)
J Phys Chem A. 2018 Nov 21;122(46):8989-8997. (PMID: 30380862)
Science. 1999 Aug 13;285(5430):1036-9. (PMID: 10446043)
J Am Chem Soc. 2019 Feb 6;141(5):2152-2160. (PMID: 30636401)
J Phys Chem B. 2021 Sep 16;125(36):10240-10259. (PMID: 34473494)
J Phys Chem B. 2008 Apr 17;112(15):4545-51. (PMID: 18366206)
Faraday Discuss. 2019 Jul 11;216(0):211-235. (PMID: 31038134)
Acc Chem Res. 2009 Nov 17;42(11):1691-9. (PMID: 19653630)
Acc Chem Res. 2009 Dec 21;42(12):1910-21. (PMID: 19803479)
J Nanobiotechnology. 2022 Jun 3;20(1):257. (PMID: 35658974)
Chemistry. 2013 Jan 2;19(1):218-32. (PMID: 23180571)
J Phys Chem A. 2018 Mar 1;122(8):2086-2095. (PMID: 29420037)
Nat Chem. 2019 Nov;11(11):981-986. (PMID: 31548665)
J Phys Chem Lett. 2022 Feb 24;13(7):1863-1871. (PMID: 35175058)
J Phys Chem B. 2022 Jan 13;126(1):110-122. (PMID: 34962787)
J Phys Chem A. 2017 Sep 21;121(37):6905-6916. (PMID: 28813152)
Chem Rev. 2005 Aug;105(8):2999-3093. (PMID: 16092826)
J Phys Chem Lett. 2019 May 16;10(10):2386-2392. (PMID: 31010285)
Chem Rev. 2016 Nov 23;116(22):13279-13412. (PMID: 27723323)
J Chem Theory Comput. 2012 Jul 10;8(7):2359-72. (PMID: 26588969)
Angew Chem Int Ed Engl. 2008;47(41):7883-7. (PMID: 18781571)
ACS Nano. 2018 Jul 24;12(7):6410-6420. (PMID: 29920202)
Radiat Res. 1963 Sep;20:55-70. (PMID: 14061481)
Chem Rev. 2017 Jan 25;117(2):249-293. (PMID: 27428615)
Nat Nanotechnol. 2017 Jan;12(1):61-66. (PMID: 27749833)
تواريخ الأحداث: Date Created: 20230127 Date Completed: 20230209 Latest Revision: 20230215
رمز التحديث: 20230215
مُعرف محوري في PubMed: PMC9923757
DOI: 10.1021/acs.jpca.2c06442
PMID: 36705555
قاعدة البيانات: MEDLINE
الوصف
تدمد:1520-5215
DOI:10.1021/acs.jpca.2c06442