دورية أكاديمية

Thermophilic Carboxylesterases from Hydrothermal Vents of the Volcanic Island of Ischia Active on Synthetic and Biobased Polymers and Mycotoxins.

التفاصيل البيبلوغرافية
العنوان: Thermophilic Carboxylesterases from Hydrothermal Vents of the Volcanic Island of Ischia Active on Synthetic and Biobased Polymers and Mycotoxins.
المؤلفون: Distaso MA; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom., Chernikova TN; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom., Bargiela R; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom., Coscolín C; Department of Applied Biocatalysis, ICP, CSIC, Madrid, Spain., Stogios P; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada., Gonzalez-Alfonso JL; Department of Applied Biocatalysis, ICP, CSIC, Madrid, Spain., Lemak S; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada., Khusnutdinova AN; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom., Plou FJ; Department of Applied Biocatalysis, ICP, CSIC, Madrid, Spain., Evdokimova E; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada., Savchenko A; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.; Department of Microbiology Immunology and Infectious Diseases, University of Calgary, Calgary, Canada., Lunev EA; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom.; Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia., Yakimov MM; Institute of Polar Sciences, National Research Council, Messina, Italy., Golyshina OV; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom., Ferrer M; Department of Applied Biocatalysis, ICP, CSIC, Madrid, Spain., Yakunin AF; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom.; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada., Golyshin PN; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom.
المصدر: Applied and environmental microbiology [Appl Environ Microbiol] 2023 Feb 28; Vol. 89 (2), pp. e0170422. Date of Electronic Publication: 2023 Jan 31.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 7605801 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-5336 (Electronic) Linking ISSN: 00992240 NLM ISO Abbreviation: Appl Environ Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, American Society for Microbiology.
مواضيع طبية MeSH: Carboxylic Ester Hydrolases*/metabolism , Hydrothermal Vents*, Polymers ; Hydrolases/metabolism ; Polyesters ; Plastics ; Substrate Specificity
مستخلص: Hydrothermal vents are geographically widespread and host microorganisms with robust enzymes useful in various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of Firmicutes , Proteobacteria , and Bacteroidota . High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate and polylactic acid (PLA) resulted in an increase of Thermus and Geobacillus species and to some extent Fontimonas and Schleiferia species. The screening at 37 to 70°C of metagenomic fosmid libraries from above enrichment cultures identified three hydrolases (IS10, IS11, and IS12), all derived from yet-uncultured Chloroflexota and showing low sequence identity (33 to 56%) to characterized enzymes. Enzymes expressed in Escherichia coli exhibited maximal esterase activity at 70 to 90°C, with IS11 showing the highest thermostability (90% activity after 20-min incubation at 80°C). IS10 and IS12 were highly substrate promiscuous and hydrolyzed all 51 monoester substrates tested. Enzymes were active with PLA, polyethylene terephthalate model substrate, and mycotoxin T-2 (IS12). IS10 and IS12 had a classical α/β-hydrolase core domain with a serine hydrolase catalytic triad (Ser155, His280, and Asp250) in their hydrophobic active sites. The crystal structure of IS11 resolved at 2.92 Å revealed the presence of a N-terminal β-lactamase-like domain and C-terminal lipocalin domain. The catalytic cleft of IS11 included catalytic Ser68, Lys71, Tyr160, and Asn162, whereas the lipocalin domain enclosed the catalytic cleft like a lid and contributed to substrate binding. Our study identified novel thermotolerant carboxylesterases with a broad substrate range, including polyesters and mycotoxins, for potential applications in biotechnology. IMPORTANCE High-temperature-active microbial enzymes are important biocatalysts for many industrial applications, including recycling of synthetic and biobased polyesters increasingly used in textiles, fibers, coatings and adhesives. Here, we identified three novel thermotolerant carboxylesterases (IS10, IS11, and IS12) from high-temperature enrichment cultures from Ischia hydrothermal vents and incubated with biobased polymers. The identified metagenomic enzymes originated from uncultured Chloroflexota and showed low sequence similarity to known carboxylesterases. Active sites of IS10 and IS12 had the largest effective volumes among the characterized prokaryotic carboxylesterases and exhibited high substrate promiscuity, including hydrolysis of polyesters and mycotoxin T-2 (IS12). Though less promiscuous than IS10 and IS12, IS11 had a higher thermostability with a high temperature optimum (80 to 90°C) for activity and hydrolyzed polyesters, and its crystal structure revealed an unusual lipocalin domain likely involved in substrate binding. The polyesterase activity of these enzymes makes them attractive candidates for further optimization and potential application in plastics recycling.
References: ACS Nano. 2020 Dec 22;14(12):17652-17664. (PMID: 33306346)
Appl Environ Microbiol. 2011 Feb;77(4):1153-61. (PMID: 21169428)
Microbiol Mol Biol Rev. 2001 Mar;65(1):1-43. (PMID: 11238984)
Appl Environ Microbiol. 2000 Jun;66(6):2541-7. (PMID: 10831436)
FEMS Microbiol Rev. 2002 Mar;26(1):73-81. (PMID: 12007643)
Nucleic Acids Res. 2010 Jul;38(12):e132. (PMID: 20403810)
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11079-84. (PMID: 19541617)
Molecules. 2019 Jun 26;24(13):. (PMID: 31247992)
Appl Microbiol Biotechnol. 2017 Jun;101(12):4935-4949. (PMID: 28331945)
EMBO J. 1993 Feb;12(2):631-9. (PMID: 8440253)
N Biotechnol. 2018 Jan 25;40(Pt A):144-153. (PMID: 28512003)
Appl Microbiol Biotechnol. 2015 Dec;99(23):10031-46. (PMID: 26266751)
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. (PMID: 29722887)
N Biotechnol. 2018 Jan 25;40(Pt A):154-169. (PMID: 28743564)
mSystems. 2020 Jan 7;5(1):. (PMID: 31911466)
Science. 2004 Apr 2;304(5667):66-74. (PMID: 15001713)
ACS Catal. 2022 Mar 18;12(6):3382-3396. (PMID: 35368328)
Appl Environ Microbiol. 2012 Dec;78(24):8694-702. (PMID: 23042183)
Archaea. 2015 Sep 30;2015:147671. (PMID: 26494981)
PLoS Biol. 2007 Mar;5(3):e16. (PMID: 17355171)
Comput Struct Biotechnol J. 2021 Feb 10;19:1214-1232. (PMID: 33680362)
Science. 2011 Jan 28;331(6016):463-7. (PMID: 21273488)
PLoS Biol. 2007 Mar;5(3):e77. (PMID: 17355176)
Biochim Biophys Acta. 2000 Oct 18;1482(1-2):9-24. (PMID: 11058743)
Environ Microbiol. 2015 Feb;17(2):332-45. (PMID: 25330254)
Int J Mol Sci. 2022 Jan 19;23(3):. (PMID: 35162993)
Appl Microbiol Biotechnol. 2011 Aug;91(4):1061-72. (PMID: 21614503)
J Mol Biol. 2000 Nov 10;303(5):761-71. (PMID: 11061974)
Nature. 2010 Mar 4;464(7285):59-65. (PMID: 20203603)
Microbiol Mol Biol Rev. 2004 Dec;68(4):669-85. (PMID: 15590779)
Microbiome. 2014 Feb 24;2(1):6. (PMID: 24558975)
Front Microbiol. 2015 Nov 23;6:1294. (PMID: 26635762)
Nature. 2021 Aug;596(7873):583-589. (PMID: 34265844)
J Ind Microbiol Biotechnol. 2017 May;44(4-5):711-720. (PMID: 28401315)
Nat Rev Microbiol. 2014 Sep;12(9):635-45. (PMID: 25118885)
FEMS Microbiol Rev. 2008 Mar;32(2):234-58. (PMID: 18266856)
PLoS Comput Biol. 2016 Jun 22;12(6):e1004926. (PMID: 27332861)
Nucleic Acids Res. 2013 Jan;41(Database issue):D423-9. (PMID: 23193256)
Curr Opin Biotechnol. 2009 Dec;20(6):616-22. (PMID: 19850467)
Nucleic Acids Res. 2022 May 24;:. (PMID: 35610055)
Front Microbiol. 2020 Nov 17;11:576520. (PMID: 33329440)
Appl Microbiol Biotechnol. 2015 Mar;99(5):2165-78. (PMID: 25194841)
J Biotechnol. 2010 Jan 15;145(2):120-9. (PMID: 19922747)
Curr Opin Microbiol. 2007 Jun;10(3):207-14. (PMID: 17548239)
Appl Environ Microbiol. 1990 Mar;56(3):782-7. (PMID: 2317046)
Front Microbiol. 2015 Apr 08;6:275. (PMID: 25904908)
Acta Crystallogr D Biol Crystallogr. 2006 Aug;62(Pt 8):859-66. (PMID: 16855301)
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. (PMID: 15572765)
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877. (PMID: 31588918)
PLoS One. 2009;4(3):e4712. (PMID: 19266066)
J Bacteriol. 2008 Dec;190(24):8086-95. (PMID: 18931117)
J Biotechnol. 2001 Jul 26;89(1):11-25. (PMID: 11472796)
PLoS Biol. 2014 Aug 05;12(8):e1001920. (PMID: 25093819)
Nature. 2020 Apr;580(7802):216-219. (PMID: 32269349)
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402. (PMID: 9254694)
FASEB J. 2000 Feb;14(2):231-41. (PMID: 10657980)
Curr Opin Struct Biol. 2011 Jun;21(3):398-403. (PMID: 21497084)
Microb Biotechnol. 2016 Jan;9(1):22-34. (PMID: 26275154)
Nature. 2008 Apr 3;452(7187):629-32. (PMID: 18337718)
Nat Rev Microbiol. 2005 Jun;3(6):510-6. (PMID: 15931168)
Curr Opin Chem Biol. 2005 Apr;9(2):166-73. (PMID: 15811801)
Biochem J. 1999 Oct 1;343 Pt 1:177-83. (PMID: 10493927)
Appl Environ Microbiol. 2004 Apr;70(4):2429-36. (PMID: 15066841)
Protein Sci. 2002 Mar;11(3):467-78. (PMID: 11847270)
ACS Chem Biol. 2018 Jan 19;13(1):225-234. (PMID: 29182315)
Environ Sci Technol. 2018 Nov 6;52(21):12388-12401. (PMID: 30284819)
Extremophiles. 2022 Feb 3;26(1):10. (PMID: 35118556)
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7. (PMID: 15034147)
Sci Rep. 2017 Mar 08;7:44103. (PMID: 28272521)
Annu Rev Microbiol. 2003;57:369-94. (PMID: 14527284)
Toxins (Basel). 2017 Mar 24;9(4):. (PMID: 28338601)
Cell. 2008 Sep 5;134(5):708-13. (PMID: 18775300)
فهرسة مساهمة: Keywords: 3PET; Ischia; PLA; biochemical characterization; carboxylesterase; crystal structure; hydrothermal vents; metagenome screening; polyesterase; thermophilic bacteria
المشرفين على المادة: EC 3.1.1.- (Carboxylic Ester Hydrolases)
0 (Polymers)
0 (polyhydroxybutyrate)
EC 3.- (Hydrolases)
0 (Polyesters)
0 (Plastics)
تواريخ الأحداث: Date Created: 20230131 Date Completed: 20230302 Latest Revision: 20230313
رمز التحديث: 20230314
مُعرف محوري في PubMed: PMC9972953
DOI: 10.1128/aem.01704-22
PMID: 36719236
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-5336
DOI:10.1128/aem.01704-22