دورية أكاديمية

Effects of discontinuous blue light stimulation on the electrophysiological properties of neurons lacking opsin expression in vitro: Implications for optogenetic experiments.

التفاصيل البيبلوغرافية
العنوان: Effects of discontinuous blue light stimulation on the electrophysiological properties of neurons lacking opsin expression in vitro: Implications for optogenetic experiments.
المؤلفون: Lightning A; Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028UMR5292, NEUROPOP, Bron, France., Bourzeix M; Aix Marseille Univ, CNRS UMR 7289, Institut de Neurosciences de la Timone (INT), Marseille, France., Beurrier C; Aix Marseille Univ, CNRS UMR 7289, Institut de Neurosciences de la Timone (INT), Marseille, France., Kuczewski N; Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028UMR5292, NEUROPOP, Bron, France.
المصدر: The European journal of neuroscience [Eur J Neurosci] 2023 Mar; Vol. 57 (6), pp. 885-899. Date of Electronic Publication: 2023 Feb 10.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
مواضيع طبية MeSH: Opsins*/genetics , Opsins*/metabolism , Optogenetics*/methods, Neurons/physiology ; Electrophysiological Phenomena ; Rod Opsins
مستخلص: Neuronal sensitivity to light stimulation can be a significant confounding factor for assays that use light to study neuronal processes, such as optogenetics and fluorescent imaging. While continuous one-photon (1P) blue light stimulation has been shown to be responsible for a decrease in firing activity in several neuronal subtypes, discontinuous 1P blue light stimulation commonly used in optogenetic experiments is supposed to have a negligible action. In the present report, we tested experimentally this theoretical prediction by assessing the effects produced by the most commonly used patterns of discontinuous 1P light stimulation on several electrophysiological parameters in brain slices. We found that, compared with continuous stimulation, the artefactual effect of light is reduced when discontinuous stimulation is used, especially when the duty cycle and light power are low.
(© 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
References: Ait Ouares, K., Beurrier, C., Canepari, M., Laverne, G., & Kuczewski, N. (2019). Opto nongenetics inhibition of neuronal firing. The European Journal of Neuroscience, 49, 6-26. https://doi.org/10.1111/ejn.14251.
Bean, B. P. (2007). The action potential in mammalian central neurons. Nature Reviews Neuroscience, 8, 451-465.
Duke, C. G., Savell, K. E., Tuscher, J. J., Phillips, R. A., & Day, J. J. (2020). Blue light-induced gene expression alterations in cultured neurons are the result of phototoxic interactions with neuronal culture media. eNeuro, 7(1), ENEURO.0386-19.2019. https://doi.org/10.1523/ENEURO.0386-19.2019.
Duménieu, M., Fourcaud-Trocmé, N., Garcia, S., & Kuczewski, N. (2015). Afterhyperpolarization (AHP) regulates the frequency and timing of action potentials in the mitral cells of the olfactory bulb: Role of olfactory experience. Physiological Reports, 3(5), e12344. https://doi.org/10.14814/phy2.12344.
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191. https://doi.org/10.3758/BF03193146.
Fourcaud-Trocmé, N., Zbili, M., Duchamp-Viret, P., & Kuczewski, N. (2022). After-hyperpolarization promotes the firing of mitral cells through a voltage dependent modification of action potential threshold. eNeuro, 9(2), ENEURO.0401-21.2021. https://doi.org/10.1523/ENEURO.0401-21.2021.
Friedmann, D., Hoagland, A., Berlin, S., & Isacoff, E. Y. (2015). A spinal opsin controls early neural activity and drives a behavioral light response. Current Biology, 25(1), 69-74. https://doi.org/10.1016/j.cub.2014.10.055.
Marshel, J. H., Kim, Y. S., Machado, T. A., Quirin, S., Benson, B., Kadmon, J., Raja, C., Chibukhchyan, A., Ramakrishnan, C., Inoue, M., Shane, J. C., McKnight, D. J., Yoshizawa, S., Kato, H. E., Ganguli, S., & Deisseroth, K. (2019). Cortical layer-specific critical dynamics triggering perception. Science, 365, eaaw5202. https://doi.org/10.1126/science.aaw5202.
Owen, S. F., Liu, M. H., & Kreitzer, A. C. (2019). Thermal constraints on in vivo optogenetic manipulations. Nature Neuroscience, 22, 1061-1065. https://doi.org/10.1038/s41593-019-0422-3.
Öztuna, D., Elhan, A. H., & Tüccar, E. (2006). Investigation of four different normality tests in terms of type 1 error rate and power under different distributions. Turkish Journal of Medical Sciences, 36(1), 171-176.
Padmanabhan, K., & Urban, N. N. (2010). Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nature Neuroscience, 13, 1276-1282. https://doi.org/10.1038/nn.2630.
Podgorski, K., & Ranganathan, G. (2016). Brain heating induced by near-infrared lasers during multiphoton microscopy. Journal of Neurophysiology, 116, 1012-1023. https://doi.org/10.1152/jn.00275.2016.
Rama, S., Zbili, M., Bialowas, A., Fronzaroli-Molinieres, L., Ankri, N., Carlier, E., Marra, V., & Debanne, D. (2015). Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels. Nature Communications, 6, 10163. https://doi.org/10.1038/ncomms10163.
Sah, P., & Faber, E. S. L. (2002). Channels underlying neuronal calcium-activated potassium currents. Progress in Neurobiology, 66(5), 345-353. https://doi.org/10.1016/S0301-0082(02)00004-7.
Senova, S., Scisniak, I., Chiang, C.-C., Doignon, I., Palfi, S., Chaillet, A., Martin, C., & Pain, F. (2017). Experimental assessment of the safety and potential efficacy of high irradiance photostimulation of brain tissues. Scientific Reports, 7, 43997. https://doi.org/10.1038/srep43997.
Sridharan, S., Gajowa, M. A., Ogando, M. B., Jagadisan, U. K., Abdeladim, L., Sadahiro, M., Bounds, H. A., Hendricks, W. D., Turney, T. S., Tayler, I., Gopakumar, K., Oldenburg, I. A., Brohawn, S. G., & Adesnik, H. (2022). High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks. Neuron, 110, 1139-1155. https://doi.org/10.1016/j.neuron.2022.01.008.
Stujenske, J. M., Spellman, T., & Gordon, J. A. (2015). Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Reports, 12, 525-534. https://doi.org/10.1016/j.celrep.2015.06.036.
Tyssowski, K. M., & Gray, J. M. (2019). Blue light increases neuronal-activity-regulated gene expression in the absence of optogenetic proteins. eNeuro, 6(5), ENEURO.0085-19.2019. https://doi.org/10.1523/ENEURO.0085-19.2019.
Wang, M., Xu, Z., Liu, Q., Sun, W., Jiang, B., Yang, K., Li, J., Gong, Y., Liu, Q., Liu, D., & Li, X. (2019). Nongenetic optical modulation of neural stem cell proliferation and neuronal/glial differentiation. Biomaterials, 225, 119539. https://doi.org/10.1016/j.biomaterials.2019.119539.
فهرسة مساهمة: Keywords: heat production; neurons; optogenetics; patch-clamp
المشرفين على المادة: 0 (Opsins)
0 (Rod Opsins)
تواريخ الأحداث: Date Created: 20230202 Date Completed: 20230320 Latest Revision: 20230327
رمز التحديث: 20231215
DOI: 10.1111/ejn.15927
PMID: 36726326
قاعدة البيانات: MEDLINE
الوصف
تدمد:1460-9568
DOI:10.1111/ejn.15927