دورية أكاديمية

Rational identification of a high catalytic efficiency leucine dehydrogenase and process development for efficient synthesis of l-phenylglycine.

التفاصيل البيبلوغرافية
العنوان: Rational identification of a high catalytic efficiency leucine dehydrogenase and process development for efficient synthesis of l-phenylglycine.
المؤلفون: Meng X; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China., Liu Y; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China., Yang L; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China., Li R; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China., Wang H; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China., Shen Y; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China., Wei D; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.
المصدر: Biotechnology journal [Biotechnol J] 2023 May; Vol. 18 (5), pp. e2200465. Date of Electronic Publication: 2023 Feb 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Verlag Country of Publication: Germany NLM ID: 101265833 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1860-7314 (Electronic) Linking ISSN: 18606768 NLM ISO Abbreviation: Biotechnol J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim : Wiley-VCH Verlag, c2006-
مواضيع طبية MeSH: Glycine* , Amino Acids*, Leucine Dehydrogenase/genetics ; Leucine Dehydrogenase/metabolism ; Catalysis ; Substrate Specificity ; Leucine
مستخلص: Enzymatic asymmetric synthesis of chiral amino acids has great industrial potential. However, the low catalytic efficiency of high-concentration substrates limits their industrial application. Herein, using a combination of substrate catalytic efficiency prediction based on "open to closed" conformational change and substrate specificity prediction, a novel leucine dehydrogenase (TsLeuDH), with high substrate catalytic efficiency toward benzoylformic acid (BFA) for producing l-phenylglycine (l-Phg), was directly identified from 4695 putative leucine dehydrogenases in a public database. The specific activity of TsLeuDH was determined to be as high as 4253.8 U mg -1 . Through reaction process optimization, a high-concentration substrate (0.7 m) was efficiently and completely converted within 90 min in a single batch, without any external coenzyme addition. Moreover, a continuous flow-feeding approach was designed using gradient control of the feed rate to reduce substrate accumulation. Finally, the highest overall substrate concentration of up to 1.2 m BFA could be aminated to l-Phg with conversion of >99% in 3 h, demonstrating that this new combination of enzyme process development is promising for large-scale application of l-Phg.
(© 2023 Wiley-VCH GmbH.)
References: Leuchtenberger, W., Huthmacher, K., & Drauz, K. (2005). Biotechnological production of amino acids and derivatives: Current status and prospects. Applied Microbiology and Biotechnology, 69, 1-8.
Graul, A., Leeson, P., & Castaner, J. (1999). Omapatrilat. Drugs Future, 24, 269-277.
Crepeau, A. Z., & Treiman, D. M. (2010). Levetiracetam: A comprehensive review. Expert Review of Neurotherapeutics, 10, 159-171.
Hoerlein, G. (1994). Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Reviews of Environment Contamination and Toxicology, 138, 73-145.
Abraham, E. P. (1983). Handbook of Experimental Pharmacology, 67, 1-14.
Wei, D. Z., & Yang, L. (2010). Effects of ethylene glycol on the synthesis of ampicillin using immobilized penicillin G acylase. Chemical Technology and Biotechnology, 78, 431-436.
Micskei, K., Holczknecht, O., Hajdu, C., Patonay, T., & Pályi, G. (2003). Asymmetric synthesis of amino acids by Cr(II) complexes of natural amino acids. Journal of Organometallic Chemistry, 682, 143-148.
Seayad, A. M., Ramalingam, B., Yoshinaga, K., Nagata, T., & Chai, C. L. L. (2009). Highly enantioselective titanium-catalyzed cyanation of imines at room temperature. Organic Letters, 12, 264-267.
Fan, C.-W., Xu, G.-C., Ma, B.-D., Bai, Y.-P., Zhang, J., & Xu, J.-H. (2015). A novel d-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids. Journal of Biotechnology, 195, 67-71.
Cheng, J., Xu, G. C., Han, R. Z., Dong, J. J., & Ni, Y. (2016). Efficient access to l-phenylglycine using a newly identified amino acid dehydrogenase from Bacillus clausii. RSC Advances, 6, 80557-80563.
Liu, Q., Zhou, J., Yang, T., Zhang, X., Xu, M., & Rao, Z. (2018). Efficient biosynthesis of l-phenylglycine by an engineered Escherichia coli with a tunable multi-enzyme-coordinate expression system. Applied Microbiology and Biotechnology, 102, 2129-2141.
Tang, C.-D., Shi, H.-L., Jia, Y.-Y., Li, X., Wang, L.-F., Xu, J.-H., Yao, L.-G., & Kan, Y.-C. (2020). High level and enantioselective production of L-phenylglycine from racemic mandelic acid by engineered Escherichia coli using response surface methodology. Enzyme and Microbial Technology, 136, 109513.
Hanefeld, U., Hollmann, F., & Paul, C. E. (2022). Biocatalysis making waves in organic chemistry. Chemical Society Reviews, 51, 594-627.
Osuna, S. (2020). The challenge of predicting distal active site mutations in computational enzyme design. WIREs Computational Molecular Science, 11, e1502.
Tokuriki, N., & Tawfik, D. S. (2009). Protein dynamism and evolvability. Science, 324, 203-207.
Qu, G., Li, A., Acevedo-Rocha, C. G., Sun, Z., & Reetz, M. T. (2020). The crucial role of methodology development in directed evolution of selective enzymes. Angewandte Chemie International Edition, 59, 13204-13231.
Campbell, E., Kaltenbach, M., Correy, G. J., Carr, P. D., Porebski, B. T., Livingstone, E. K., Afriat-Jurnou, L., Buckle, A. M., Weik, M., Hollfelder, F., Tokuriki, N., & Jackson, C. J. (2016). The role of protein dynamics in the evolution of new enzyme function. Nature Chemical Biology, 12, 944-950.
Kreß, N., Halder, J. M., Rapp, L. R., & Hauer, B. (2018). Unlocked potential of dynamic elements in protein structures: Channels and loops. Current Opinion in Chemical Biology, 47, 109-116.
Shimozawa, Y., Himiyama, T., Nakamura, T., & Nishiya, Y. (2021). Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus. Protein Engineering Design & Selection, 34, 1-6.
Tian, L., Zhou, J., Lv, Q., Liu, F., Yang, T., Zhang, X., Xu, M., & Rao, Z. (2021). Rational engineering of the Plasmodium falciparum l-lactate dehydrogenase loop involved in catalytic proton transfer to improve chiral 2-hydroxybutyric acid production. International Journal of Biological Macromolecules, 179, 71-79.
Qu, G., Bi, Y., Liu, B., Li, J., Han, X., Liu, W., Jiang, Y., Qin, Z., & Sun, Z. (2022). Unlocking the stereoselectivity and substrate acceptance of enzymes: Proline-induced loop engineering test. Angewandte Chemie International Edition, 61, e202110793.
Baker, P. J., Turnbull, A. P., Sedelnikova, S. E., Stillman, T. J., & Rice, D. W. (1995). A role for quaternary structure in the substrate specificity of leucine dehydrogenase. Structure (London, England), 3, 693-705.
Oide, M., Kato, T., Oroguchi, T., & Nakasako, M. (2020). Energy landscape of domain motion in glutamate dehydrogenase deduced from cryo-electron microscopy. The FEBS Journal, 287, 3472-3493.
Schramm, A. M., Mehra-Chaudhary, R., Furdui, C. M., & Beamer, L. J. (2008). Backbone flexibility, conformational change, and catalysis in a phosphohexomutase from Pseudomonas aeruginosa. Biochemistry, 47, 9154-9162.
Kazuyo, F., Hong, S. Y., Yeon, Y. J., Joo, J. C., & Yoo, Y. J. (2014). Enhancing the activity of Bacillus circulans xylanase by modulating the flexibility of the hinge region. Journal of Industrial Microbiology & Biotechnology, 41, 1181-1190.
Tu, T., Pan, X., Meng, K., Luo, H., Ma, R., Wang, Y., & Yao, B. (2016). Substitution of a non-active-site residue located on the T3 loop increased the catalytic efficiency of endo-polygalacturonases. Process Biochemistry, 51, 1230-1238.
Suzuki, K., Maeda, S., & Morokuma, K. (2019). Roles of closed- and open-loop conformations in large-scale structural transitions of l-lactate dehydrogenase. ACS Omega, 4, 1178-1184.
Knapp, S., de Vos, W. M., Rice, D., & Ladenstein, R. (1997). Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 Å resolution. Journal of Molecular Biology, 267, 916-932.
Pace, C. N., Trevio, S., Prabhakaran, E., & Scholtz, J. M. (2004). Protein structure, stability and solubility in water and other solvents. Philosophical Transactions of the Royal Society B, 359, 1234-1235.
Der, B. S., Kluwe, C., Miklos, A. E., Jacak, R., & Lyskov, S. (2013). Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability. PLoS ONE, 8, e64363.
Pedersen, J. N., Zhou, Y., Guo, Z., & Pérez, B. (2019). Genetic and chemical approaches for surface charge engineering of enzymes and their applicability in biocatalysis: A review. Biotechnology and Bioengineering, 116, 1795-1812.
Huisman, G. W., Liang, J., & Krebber, A. (2010). Practical chiral alcohol manufacture using ketoreductases. Current Opinion in Chemical Biology, 14, 122-129.
Meng, X., Yang, L., Liu, Y., Wang, H., Shen, Y., & Wei, D. (2021). Identification and rational engineering of a high substrate-tolerant leucine dehydrogenase effective for the synthesis of l-tert-leucine. ChemCatChem, 13, 3340-3349.
Britton, K. L., Baker, P. J., Engel, P. C., Rice, D. W., & Stillman, T. J. (1993). Evolution of substrate diversity in the superfamily of amino acid dehydrogenases. Journal of Molecular Biology, 234, 938-945.
Bairoch, A. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research, 28, 45-48.
O'Donovan, C., Martin, M. J., Gattiker, A., Gasteiger, E., Bairoch, A., & Apweiler, R. (2002). High-quality protein knowledge resource: SWISS-PROT and TrEMBL. Briefings in Bioinformatics, 3, 275-284.
Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059-3066.
Caparco, A. A., Pelletier, E., Petit, J. L., Jouenne, A., Bommarius, B. R., de Berardinis, V., Zaparucha, A., Champion, J. A., Bommarius, A. S., & Vergne-Vaxelaire, C. (2020). Metagenomic mining for amine dehydrogenase discovery. Advanced Synthesis & Catalysis, 362, 2427-2436.
Menzel, A., Werner, H., Altenbuchner, J., & Gröger, H. (2004). From enzymes to “Designer Bugs” in reductive amination: A new process for the synthesis of l-tert-leucine using a whole cell-catalyst. Engineering in Life Sciences, 4, 573-576.
Mayol, O., Bastard, K., Beloti, L., Frese, A., Turkenburg, J. P., Petit, J.-L., Mariage, A., Debard, A., Pellouin, V., Perret, A., de Berardinis, V., Zaparucha, A., Grogan, G., & Vergne-Vaxelaire, C. (2019). A family of native amine dehydrogenases for the asymmetric reductive amination of ketones. Nature Catalysis, 2, 324-333.
Cho, B.-K., Seo, J.-H., Kim, J., Lee, C.-S., & Kim, B.-G. (2006). Asymmetric synthesis of unnaturall-amino acids using thermophilic aromaticl-amino acid transaminase. Biotechnology and Bioprocess Engineering, 11, 299-305.
Ayazi Shamlou, P., & Koutsakos, E. (1989). Solids suspension and distribution in liquids under turbulent agitation. Chemical Engineering Science, 44, 529-542.
Micheletti, M., Nikiforaki, L., Lee, K. C., & Yianneskis, M. (2003). Particle concentration and mixing characteristics of moderate-to-dense solid−liquid suspensions. Industrial & Engineering Chemistry Research, 42, 6236-6249.
Hosseini, S., Patel, D., Ein-Mozaffari, F., & Mehrvar, M. (2010). Study of solid−liquid mixing in agitated tanks through computational fluid dynamics modeling. Industrial & Engineering Chemistry Research, 49, 4426-4435.
Sivapragasam, M., Moniruzzaman, M., & Goto, M. (2016). Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications. Biotechnology Journal, 11, 1000-1013.
Straathof, A. J. J. (2003). Enzymatic catalysis via liquid-liquid interfaces. Biotechnology and Bioengineering, 83, 371-375.
Santana, M., Ribeiro, M. P. A., Leite, G. A., Giordano, R. L. C., Giordano, R. C., & Mattedi, S. (2010). Solid-liquid equilibrium of substrates and products of the enzymatic synthesis of ampicillin. AIChE Journal, 56, 1578-1583.
Gomes, A. d. C., Moyses, D. N., Santa Anna, L. M. M., & Machado de Castro, A. (2018). Fed-batch strategies for saccharification of pilot-scale mild-acid and alkali pretreated sugarcane bagasse: Effects of solid loading and surfactant addition. Industrial Crops and Products, 119, 283-289.
Zhou, J., Wang, Y., Xu, G., Wu, L., Han, R., Schwaneberg, U., Rao, Y., Zhao, Y.-L., Zhou, J., & Ni, Y. (2018). Structural insight into enantioselective inversion of an alcohol dehydrogenase reveals a “Polar Gate” in stereorecognition of diaryl ketones. Journal of the American Chemical Society, 140, 12645-12654.
معلومات مُعتمدة: 2021YFC2102100 National Key Research and Development Program of China
فهرسة مساهمة: Keywords: bioprocess development; conformational change; genome mining; l-phenylglycine; leucine dehydrogenase
المشرفين على المادة: EC 1.4.1.9 (Leucine Dehydrogenase)
69-91-0 (2-phenylglycine)
TE7660XO1C (Glycine)
0 (Amino Acids)
GMW67QNF9C (Leucine)
تواريخ الأحداث: Date Created: 20230204 Date Completed: 20230510 Latest Revision: 20230510
رمز التحديث: 20231215
DOI: 10.1002/biot.202200465
PMID: 36738237
قاعدة البيانات: MEDLINE
الوصف
تدمد:1860-7314
DOI:10.1002/biot.202200465