دورية أكاديمية

Studies of Cytotoxicity Effects, SARS-CoV-2 Main Protease Inhibition, and in Silico Interactions of Synthetic Chalcones.

التفاصيل البيبلوغرافية
العنوان: Studies of Cytotoxicity Effects, SARS-CoV-2 Main Protease Inhibition, and in Silico Interactions of Synthetic Chalcones.
المؤلفون: Guterres Fernandes OL; Postgraduate Program in Chemistry, Department of Chemistry, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, 88040-900, Florianópolis, SC, Brazil., Tizziani T; Postgraduate Program in Chemistry, Department of Chemistry, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, 88040-900, Florianópolis, SC, Brazil., Dambrós BP; Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil., Ferreira de Sousa N; Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Universidade Federal de Paraíba, 50670-910, João Pessoa, Paraíba, Brazil., Mansur Pontes CL; Postgraduate Program in Chemistry, Department of Chemistry, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, 88040-900, Florianópolis, SC, Brazil., da Silva LAL; Postgraduate Program in Pharmacy, Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Campus Universitário-Trindade, 88040-900, Florianópolis, SC, Brazil., Escorteganha Pollo LA; Postgraduate Program in Pharmacy, Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Campus Universitário-Trindade, 88040-900, Florianópolis, SC, Brazil., de Assis FF; Postgraduate Program in Chemistry, Department of Chemistry, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, 88040-900, Florianópolis, SC, Brazil., Scotti MT; Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Universidade Federal de Paraíba, 50670-910, João Pessoa, Paraíba, Brazil., Scotti L; Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Universidade Federal de Paraíba, 50670-910, João Pessoa, Paraíba, Brazil., Braga AL; Postgraduate Program in Chemistry, Department of Chemistry, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, 88040-900, Florianópolis, SC, Brazil., Steindel M; Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil., Sandjo LP; Postgraduate Program in Chemistry, Department of Chemistry, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, 88040-900, Florianópolis, SC, Brazil.
المصدر: Chemistry & biodiversity [Chem Biodivers] 2023 Mar; Vol. 20 (3), pp. e202201151. Date of Electronic Publication: 2023 Feb 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Verlag Helvetica Chimica Acta Country of Publication: Switzerland NLM ID: 101197449 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1612-1880 (Electronic) Linking ISSN: 16121872 NLM ISO Abbreviation: Chem Biodivers Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Zürich, Switzerland : Hoboken, NJ : Verlag Helvetica Chimica Acta ; Distributed in the USA by Wiley, c2004-
مواضيع طبية MeSH: COVID-19* , Chalcones*/pharmacology , Chalcones*/chemistry, Humans ; SARS-CoV-2 ; Molecular Docking Simulation ; Protease Inhibitors/pharmacology ; Protease Inhibitors/chemistry ; Antiviral Agents/pharmacology ; Antiviral Agents/chemistry ; Molecular Dynamics Simulation
مستخلص: SARS-CoV-2 main protease (M pro ) plays an essential role in proteolysis cleavage that promotes coronavirus replication. Thus, attenuating the activity of this enzyme represents a strategy to develop antiviral agents. We report inhibitory effects against M pro of 40 synthetic chalcones, and cytotoxicity activities, hemolysis, and in silico interactions of active compounds. Seven of them bearing a (E)-3-(furan-2-yl)-1-arylprop-2-en-1-one skeleton (10, 28, and 35-39) showed enzyme inhibition with IC 50 ranging from 13.76 and 36.13 μM. Except for 35 and 36, other active compounds were not cytotoxic up to 150 μM against THP-1 and Vero cell lines. Compounds 10, and 35-39 showed no hemolysis while 28 was weakly hemotoxic at 150 μM. Moreover, molecular docking showed interactions between compound 10 and M pro (PDBID 5RG2 and 5RG3) with proximity to cys145 and His41, suggesting a covalent binding. Products of the reaction between chalcones and cyclohexanethiol indicated that this binding could be a Michael addition type.
(© 2023 Wiley-VHCA AG, Zurich, Switzerland.)
References: R. Razali, H. Asis, C. Budiman, ‘Structure-function characteristics of sars-cov-2 proteases and their potential inhibitors from microbial sources’, Microorganisms. 2021, 9.
A. Narayanan, M. Narwal, S. A. Majowicz, C. Varricchio, S. A. Toner, C. Ballatore, A. Brancale, K. S. Murakami, J. Jose, ‘Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay’, Commun. Biol. 2022, 5.
D. M. Mellott, C.-T. Tseng, A. Drelich, P. Fajtová, B. C. Chenna, D. H. Kostomiris, J. Hsu, J. Zhu, Z. W. Taylor, V. Tat, A. Katzfuss, L. Li, M. A. Giardini, D. Skinner, K. Hirata, S. Beck, A. F. Carlin, A. E. Clark, L. Beretta, D. Maneval, F. Frueh, B. L. Hurst, H. Wang, K. I. Kocurek, F. M. Raushel, A. J. O. J. Lage de Siqueira-Neto, T. D. Meek, J. H. McKerrow, ‘A cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells’, BioRxiv [Preprint]. 2020.
L. Agost-Beltrán, S. de La Hoz-Rodríguez, L. Bou-Iserte, S. Rodríguez, A. Fernández-De-La-Pradilla, F. v González, ‘Advances in the Developing of SARS-CoV-2 Mpro Inhibitors’, 2022.
J. Breidenbach, C. Lemke, T. Pillaiyar, L. Schäkel, G. al Hamwi, M. Diett, R. Gedschold, N. Geiger, V. Lopez, S. Mirza, V. Namasivayam, A. C. Schiedel, K. Sylvester, D. Thimm, C. Vielmuth, L. Phuong Vu, M. Zyulina, J. Bodem, M. Gütschow, C. E. Müller, ‘Targeting the Main Protease of SARS-CoV-2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors’, Angew. Chem. Int. Ed. 2021, 60, 10423-10429.
S. Chamakuri, S. Lu, M. N. Ucisik, K. M. Bohren, Y. C. Chen, H. C. Du, J. C. Faver, R. Jimmidi, F. Li, J. Y. Li, P. Nyshadham, S. S. Palmer, J. Pollet, X. Qin, S. E. Ronca, B. Sankaran, K. L. Sharma, Z. Tan, L. Versteeg, Z. Yu, M. M. Matzuk, T. Palzkill, D. W. Young, ‘DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 Mpro inhibitors’, Proc. Natl. Acad. Sci. USA 2021, 118, e2111172118.
J. Y. Park, J. A. Ko, D. W. Kim, Y. M. Kim, H. J. Kwon, H. J. Jeong, C. Y. Kim, K. H. Park, W. S. Lee, Y. B. Ryu, ‘Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV’, J. Enzyme Inhib. Med. Chem. 2016, 31, 23-30.
L. N. O. L. da Cunha, T. Tizziani, G. B. Souza, M. A. Moreira, J. S. S. Neto, C. V. d dos Santos, M. G. de Carvalho, E. M. Dalmarco, L. B. Turqueti, M. T. Scotti, L. Scotti, F. F. de Assis, A. L. Braga, L. P. Sandjo, ‘Natural Products with Tandem Anti-inflammatory, Immunomodulatory and Anti-SARS-CoV/2 Effects: A Drug Discovery Perspective against SARS-CoV-2’, Curr. Med. Chem. 2021, 29, 2530-2564.
D. M. Borchhardt, A. Mascarello, L. D. Chiaradia, R. J. Nunes, G. Oliva, R. A. Yunes, A. D. Andricopulo, ‘Biochemical Evaluation of a Series of Synthetic Chalcone and Hydrazide Derivatives as Novel Inhibitors of Cruzain from Trypanosoma cruzi’, J. Braz. Chem. Soc. 2010, 21, 142-150.
N. Tadigoppula, V. Korthikunta, S. Gupta, P. Kancharla, T. Khaliq, A. Soni, R. K. Srivastava, K. Srivastava, S. K. Puri, K. S. R. Raju, Wahajuddin, P. S. Sijwali, V. Kumar, I. S. Mohammad, ‘Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents’, J. Med. Chem. 2013, 56, 31-45.
O. Freund, L. Tau, T. E. Weiss, L. Zornitzki, S. Frydman, G. Jacob, G. Bornstein, ‘Associations of vaccine status with characteristics and outcomes of hospitalized severe COVID-19 patients in the booster era’, PLoS One. 2022, 17.
E. F. Martin, L. A. E. Pollo, L. A. L. da Silva, M. W. Biavatti, L. P. Sandjo, ‘In vitro studies of a series of synthetic compounds for their anti-acetylcholinesterase activities identified arylpyrano[2,3-f]coumarins as hit compounds’, J. Mol. Struct. 2022, 1260.
Y. Zhu, D. Y. Xie, ‘Docking Characterization and in vitro Inhibitory Activity of Flavan-3-ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2’, Front. Plant Sci. 2020, 11.
J. A. Hinson, D. W. Roberts, ‘Role of covalent and noncovalent interactions in cell toxicity: effects on proteins Proteins’, Annu. Rev. Pharmacol. Toxicol. 1992, 32, 471-510.
A. Douangamath, D. Fearon, P. Gehrtz, T. Krojer, P. Lukacik, C. D. Owen, E. Resnick, C. Strain-Damerell, A. Aimon, P. Ábrányi-Balogh, J. Brandão-Neto, A. Carbery, G. Davison, A. Dias, T. D. Downes, L. Dunnett, M. Fairhead, J. D. Firth, S. P. Jones, A. Keeley, G. M. Keserü, H. F. Klein, M. P. Martin, M. E. M. Noble, P. O'Brien, A. Powell, R. N. Reddi, R. Skyner, M. Snee, M. J. Waring, C. Wild, N. London, F. von Delft, M. A. Walsh, ‘Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease’, Nat. Commun. 2020, 11.
R. Leung-Toung, Y. Zhao, W. Li, T. F. Tam, K. Karimian, M. Spino, ‘Thiol Proteases: Inhibitors and Potential Therapeutic Targets 1’, Curr. Med. Chem. 2006, 13, 547-581.
S. H. Reich, T. Johnson, M. B. Wallace, S. E. Kephart, S. A. Fuhrman, S. T. Worland, D. A. Matthews, T. F. Hendrickson, F. Chan, J. Meador, R. A. Ferre, E. L. Brown, D. M. DeLisle, A. K. Patick, S. L. Binford, C. E. Ford, ‘Substituted benzamide inhibitors of human rhinovirus 3 C protease: Structure-based design, synthesis, and biological evaluation’, J. Med. Chem. 2000, 43, 1670-1683.
J. M. Machin, A. L. Kantsadi, I. Vakonakis, ‘The complex of Plasmodium falciparum falcipain-2 protease with an (E)-chalcone-based inhibitor highlights a novel, small, molecule-binding site’, Malar. J. 2019, 18.
P. A. Jackson, J. C. Widen, D. A. Harki, K. M. Brummond, ‘Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions’, J. Med. Chem. 2017, 60, 839-885.
C. Pitchumani Violet Mary, R. Shankar, S. Vijayakumar, ‘Mechanistic insights into the inhibition mechanism of cysteine cathepsins by chalcone-based inhibitors - a QM cluster model approach’, Struct. Chem. 2019, 30, 1779-1793.
Q. D. Wang, J. M. Yang, D. Fang, J. Ren, B. B. Zeng, ‘Iodine-catalyzed C3-formylation of indoles using hexamethylenetetramine and air’, Tetrahedron Lett. 2017, 58, 2877-2880.
A. Özdemir, M. D. Altintop, G. Turan-Zitouni, G. A. Çiftҫi, Ö. Ertorun, Ö. Alataş, Z. A. Kaplancikli, ‘Synthesis and evaluation of new indole-based chalcones as potential antiinflammatory agents’, Eur. J. Med. Chem. 2015, 89, 304-309.
X. Xia, P. H. Toy, ‘Polyethyleneimine-Supported Triphenylphosphine and Its Use as a Highly Loaded Bifunctional Polymeric Reagent in Chromatography-Free One-Pot Wittig Reactions’, Synlett. 2015, 26, 1737-1743.
J. Sivamani, V. Ashokkumar, V. Sadhasivam, K. Duraimurugan, A. Siva, ‘Ultrasonic assisted dimeric cinchona based chiral phase transfer catalysts for highly enanatioselective synthesis of epoxidation of α,β-unsaturated ketones’, RSC Adv. 2014, 4, 60293-60299.
D. Ramesh, A. Joji, B. G. Vijayakumar, A. Sethumadhavan, M. Mani, T. Kannan, ‘Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis’, Eur. J. Med. Chem. 2020, 198.
S. Liu, Z. Shi, W. Xu, H. Yang, N. Xi, X. Liu, Q. Zhao, W. Huang, ‘A class of wavelength-tunable near-infrared aza-BODIPY dyes and their application for sensing mercury ion’, Dyes Pigm. 2014, 103, 145-153.
Y. Shang, X. Jie, J. Zhou, P. Hu, S. Huang, W. Su, ‘Pd-catalyzed C−H olefination of (hetero)arenes by using saturated ketones as an olefin source’, Angew. Chem. Int. Ed. 2013, 52, 1299-1303.
C. J. Zheng, S. M. Jiang, Z. H. Chen, B. J. Ye, H. R. Piao, ‘Synthesis and anti-bacterial activity of some heterocyclic chalcone derivatives bearing thiofuran, furan, and quinoline moieties’, Arch. Pharm. (Weinheim). 2011, 344, 689-695.
A. Kumar, Akanksha, ‘Amino acid catalyzed thio-Michael addition reactions’, Tetrahedron. 2007, 63, 11086-11092.
B. Page, M. Page, C. Noël, ‘A new fluorometric assay for cytotoxicity measurements in vitro’, Int. J. Oncol. 1993, 3, 473-476.
C. M. Queiroz, G. B. de Oliveira Filho, J. W. P. Espíndola, A. V. do Nascimento, A. S. dos S. Aliança, V. M. B. de Lorena, A. P. S. Feitosa, P. R. da Silva, L. C. Alves, A. C. L. Leite, F. A. Brayner, ‘Thiosemicarbazone and thiazole: in vitro evaluation of leishmanicidal and ultrastructural activity on Leishmania infantum’, Med. Chem. Res. 2020, 29, 2050-2065.
ChemAxon, ‘Marvin Sketch’, (n.d.).
Wavefunction, ‘Spartan’ 08’, 2021.
University of California San Francisco - USFC, ‘Modeller 9.20 - Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints’, 2020.
G. Cruciani, P. Crivori, P. A. Carrupt, B. Testa, ‘Molecular fields in quantitative structure-permeation relationships: The VolSurf approach’, Journal of Molecular Structure: THEOCHEM. 2000, 503, 17-30.
G. Cruciani, M. Pastor, W. Guba, ‘VolSurf: A new tool for the pharmacokinetic optimization of lead compounds’, Eur. J. Pharm. Sci. 2000, 11, S29-39.
RCSB, ‘Protein Data Bank’, (n.d.).
F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer Jr, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, M. Tasumi, ‘The Protein Data Bank: A computer-based archival file for macromolecular structures’, Eur. J. Biochem. 1977, 80, 319-324.
A. Douangamath, D. Fearon, P. Gehrtz, T. Krojer, P. Lukacik, C. D. Owen, E. Resnick, C. Strain-Damerell, A. Aimon, P. Ábrányi-Balogh, ‘Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease’, Nat. Commun. 2020, 11, 1-11.
Molexus Computational Drug Discovery, ‘Molegro Virtual Docker User Manual - MVD 2019.7.0’, Copyright Molexus. 2019, 1, 239.
R. Thomsen, M. H. Christensen, ‘MolDock: a new technique for high-accuracy molecular docking’, J. Med. Chem. 2006, 49, 3315-3321.
J. De Azevedo, F. Walter, ‘MolDock applied to structure-based virtual screening’, Curr. Drug Targets 2010, 11, 327-334.
معلومات مُعتمدة: 633/2020 CAPES; 306653/2020-6 CNPq
فهرسة مساهمة: Keywords: SARS-CoV-2 Mpro; heterocyclic chalcones; inhibitory effects; molecular docking
المشرفين على المادة: 0 (Chalcones)
EC 3.4.22.- (3C-like proteinase, SARS-CoV-2)
0 (Protease Inhibitors)
0 (Antiviral Agents)
تواريخ الأحداث: Date Created: 20230205 Date Completed: 20230324 Latest Revision: 20230324
رمز التحديث: 20231215
DOI: 10.1002/cbdv.202201151
PMID: 36740573
قاعدة البيانات: MEDLINE
الوصف
تدمد:1612-1880
DOI:10.1002/cbdv.202201151