دورية أكاديمية

Direct digital sensing of protein biomarkers in solution.

التفاصيل البيبلوغرافية
العنوان: Direct digital sensing of protein biomarkers in solution.
المؤلفون: Krainer G; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK., Saar KL; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK., Arter WE; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK., Welsh TJ; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK., Czekalska MA; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.; Fluidic Analytics Limited, Unit A The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK., Jacquat RPB; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK., Peter Q; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK., Traberg WC; Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK., Pujari A; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.; Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK., Jayaram AK; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK., Challa P; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK., Taylor CG; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK., van der Linden LM; Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany., Franzmann T; Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany., Owens RM; Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK., Alberti S; Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany., Klenerman D; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK., Knowles TPJ; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. tpjk2@cam.ac.uk.; Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE, UK. tpjk2@cam.ac.uk.
المصدر: Nature communications [Nat Commun] 2023 Feb 06; Vol. 14 (1), pp. 653. Date of Electronic Publication: 2023 Feb 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Biosensing Techniques*/methods, Immunoassay ; Biomarkers/analysis ; Amyloid ; Microfluidics/methods
مستخلص: The detection of proteins is of central importance to biomolecular analysis and diagnostics. Typical immunosensing assays rely on surface-capture of target molecules, but this constraint can limit specificity, sensitivity, and the ability to obtain information beyond simple concentration measurements. Here we present a surface-free, single-molecule microfluidic sensing platform for direct digital protein biomarker detection in solution, termed digital immunosensor assay (DigitISA). DigitISA is based on microchip electrophoretic separation combined with single-molecule detection and enables absolute number/concentration quantification of proteins in a single, solution-phase step. Applying DigitISA to a range of targets including amyloid aggregates, exosomes, and biomolecular condensates, we demonstrate that the assay provides information beyond stoichiometric interactions, and enables characterization of immunochemistry, binding affinity, and protein biomarker abundance. Taken together, our results suggest a experimental paradigm for the sensing of protein biomarkers, which enables analyses of targets that are challenging to address using conventional immunosensing approaches.
(© 2023. The Author(s).)
References: Kelley, S. O. et al. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. Nat. Nanotechnol. 9, 969–980 (2014). (PMID: 10.1038/nnano.2014.261)
Wild, D. The immunoassay handbook. Theory and Applications of Ligand Binding, ELISA and Related Techniques. (Elsevier Netherlands, 2013).
Wilson, R. Sensitivity and specificity: twin goals of proteomics assays. Can they be combined? Expert Rev. Proteom. 10, 135–149 (2013). (PMID: 10.1586/epr.13.7)
Giljohann, D. A. & Mirkin, C. A. Drivers of biodiagnostic development. Nature 462, 461–464 (2009). (PMID: 10.1038/nature08605)
Engvall, E. & Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8, 871–874 (1971). (PMID: 10.1016/0019-2791(71)90454-X)
Lequin, R. M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 51, 2415–2418 (2005). (PMID: 10.1373/clinchem.2005.051532)
Sano, T., Smith, C. L. & Cantor, C. R. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258, 120–122 (1992). (PMID: 10.1126/science.1439758)
De La Rica, R. & Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 7, 821–824 (2012). (PMID: 10.1038/nnano.2012.186)
Stern, E. et al. A nanoelectronic enzyme-linked immunosorbent assay for detection of proteins in physiological solutions. Small 6, 232–238 (2010). (PMID: 10.1002/smll.200901551)
Shim, J. et al. Ultrarapid Generation of Femtoliter Microfluidic Droplets for Single-Molecule-Counting Immunoassays. ACS Nano 7, 5955–5964 (2013). (PMID: 10.1021/nn401661d)
Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010). (PMID: 10.1038/nbt.1641)
Graham, H., Chandler, D. J. & Dunbar, S. A. The genesis and evolution of bead-based multiplexing. Methods 158, 2–11 (2019). (PMID: 10.1016/j.ymeth.2019.01.007)
Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325 (2008). (PMID: 10.1038/nbt1385)
Gold, L. et al. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery. PLoS One 5, e15004 (2010). (PMID: 10.1371/journal.pone.0015004)
Wienken, C. J., Baaske, P., Rothbauer, U., Braun, D. & Duhr, S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun.1, 100 (2010). (PMID: 10.1038/ncomms1093)
Miyazaki, C. M., Shimizu, F. M. & Ferreira, M. Surface Plasmon Resonance (SPR) for Sensors and Biosensors. In Micro and Nano Technologies, Nanocharacterization Techniques (eds. Da Róz, A. L., Ferreira, M., de Lima Leite, F. & Oliveira, O. N.) 183–200 (Elsevier Netherlands, 2017).
Zhou, X., Tang, Y. & Xing, D. One-step homogeneous protein detection based on aptamer probe and fluorescence cross-correlation spectroscopy. Anal. Chem. 83, 2906–2912 (2011). (PMID: 10.1021/ac1028648)
Perrier, S., Guieu, V., Chovelon, B., Ravelet, C. & Peyrin, E. Panoply of Fluorescence Polarization/Anisotropy Signaling Mechanisms for Functional Nucleic Acid-Based Sensing Platforms. Anal. Chem. 90, 4236–4248 (2018). (PMID: 10.1021/acs.analchem.7b04593)
Saar, K. L. et al. On-chip label-free protein analysis with downstream electrodes for direct removal of electrolysis products. Lab Chip 18, 162–170 (2018). (PMID: 10.1039/C7LC00797C)
Saar, K. L., Müller, T., Charmet, J., Challa, P. K. & Knowles, T. P. J. Enhancing the Resolution of Micro Free Flow Electrophoresis through Spatially Controlled Sample Injection. Anal. Chem. 90, 8998–9005 (2018). (PMID: 10.1021/acs.analchem.8b01205)
Fries, J. R., Brand, L., Eggeling, C., Köllner, M. & Seidel, C. A. M. Quantitative identification of different single molecules by selective time-resolved confocal fluorescence spectroscopy. J. Phys. Chem. A 102, 6601–6613 (1998). (PMID: 10.1021/jp980965t)
Schaffer, J. et al. Identification of Single Molecules in Aqueous Solution by Time-Resolved Fluorescence Anisotropy. J. Phys. Chem. A 103, 331–336 (1999). (PMID: 10.1021/jp9833597)
Howarth, M. et al. A monovalent streptavidin with a single femtomolar biotin binding site. Nat. Methods 3, 267–273 (2006). (PMID: 10.1038/nmeth861)
Arter, W. E. et al. Combining Affinity Selection and Specific Ion Mobility for Microchip Protein Sensing. Anal. Chem. 90, 10302–10310 (2018). (PMID: 10.1021/acs.analchem.8b02051)
Welsh, T. J. et al. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. Nano Lett. 22, 612–621 (2022). (PMID: 10.1021/acs.nanolett.1c03138)
Grimbacher, B., Holland, S. M. & Puck, J. M. Hyper-IgE syndromes. Immunol. Rev. 203, 244–250 (2005). (PMID: 10.1111/j.0105-2896.2005.00228.x)
Ogawa, M., Kochwa, S., Smith, C., Ishizaka, K. & McIntyre, O. R. Clinical aspects of IgE myeloma. N. Engl. J. Med. 281, 1217–1220 (1969). (PMID: 10.1056/NEJM196911272812204)
Wiegand, T. W. et al. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J. Immunol. 157, 221–230 (1996). (PMID: 10.4049/jimmunol.157.1.221)
Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990). (PMID: 10.1126/science.2200121)
Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990). (PMID: 10.1038/346818a0)
Zhuo, Z. et al. Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine. Int. J. Mol. Sci. 18, 2142 (2017). (PMID: 10.3390/ijms18102142)
Lollo, B., Steele, F. & Gold, L. Beyond antibodies: New affinity reagents to unlock the proteome. Proteomics 14, 638–644 (2014). (PMID: 10.1002/pmic.201300187)
Turgeon, R. T., Fonslow, B. R., Jing, M. & Bowser, M. T. Measuring aptamer equilibria using gradient micro free flow electrophoresis. Anal. Chem. 82, 3636–3641 (2010). (PMID: 10.1021/ac902877v)
German, I., Buchanan, D. D. & Kennedy, R. T. Aptamers as ligands in affinity probe capillary electrophoresis. Anal. Chem. 70, 4540–4545 (1998). (PMID: 10.1021/ac980638h)
Campbell, J., Pollock, N. R., Sharon, A. & Sauer-Budge, A. F. Development of an automated on-chip bead-based ELISA platform. Anal. Methods 7, 8472–8477 (2015). (PMID: 10.1039/C5AY00264H)
Tsukakoshi, K., Abe, K., Sode, K. & Ikebukuro, K. Selection of DNA aptamers that recognize α-synuclein oligomers using a competitive screening method. Anal. Chem. 84, 5542–5547 (2012). (PMID: 10.1021/ac300330g)
Parnetti, L. et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 18, 573–586 (2019). (PMID: 10.1016/S1474-4422(19)30024-9)
Ingelsson, M. Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other lewy body disorders. Front. Neurosci. 10, 408 (2016).
Lorenzen, N. et al. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation. J. Am. Chem. Soc. 136, 3859–3868 (2014). (PMID: 10.1021/ja411577t)
Arter, W. E. et al. Rapid structural, kinetic, and immunochemical analysis of alpha-synuclein oligomers in solution. Nano Lett. 20, 8163–8169 (2020).
Michaels, T. C. T. et al. Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat. Chem. 12, 445–451 (2020). (PMID: 10.1038/s41557-020-0452-1)
Chen, S. W. et al. Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proc. Natl. Acad. Sci. USA. 112, E1994–E2003 (2015).
Shin, J., Kim, H. J. & Jeon, B. Immunotherapy targeting neurodegenerative proteinopathies: α-synucleinopathies and tauopathies. J. Move. Disorders. 13, 11–19 (2020).
Théry, C., Zitvogel, L. & Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002). (PMID: 10.1038/nri855)
Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).
Pegtel, D. M. & Gould, S. J. Exosomes. Annu. Rev. Biochem. 88, 487–514 (2019). (PMID: 10.1146/annurev-biochem-013118-111902)
Zhou, B. et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct. Target. Ther. 5, 1–14 (2020).
Dai, J. et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther. 5, 1–10 (2020).
Yu, W. et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann. Oncol. 32, 466–477 (2021). (PMID: 10.1016/j.annonc.2021.01.074)
Kosaka, N. et al. Exploiting the message from cancer: the diagnostic value of extracellular vesicles for clinical applications. Exp. Mol. Med. 51, 1–9 (2019). (PMID: 10.1038/s12276-019-0219-1)
Zhang, Z. et al. Aptamer-based fluorescence polarization assay for separation-free exosome quantification. Nanoscale 11, 10106–10113 (2019). (PMID: 10.1039/C9NR01589B)
Chavez, K. J., Garimella, S. V. & Lipkowitz, S. Triple negative breast cancer cell lines: One tool in the search for better treatment of triple negative breast cancer. Breast Dis. 32, 35–48 (2010). (PMID: 10.3233/BD-2010-0307)
Jung, H. H., Kim, J. Y., Lim, J. E. & Im, Y. H. Cytokine profiling in serum-derived exosomes isolated by different methods. Sci. Rep. 10, 14069 (2020). (PMID: 10.1038/s41598-020-70584-z)
Tian, Y. et al. Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients via Flow Cytometry. ACS Nano 12, 671–680 (2018). (PMID: 10.1021/acsnano.7b07782)
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017). (PMID: 10.1038/nrm.2017.7)
Bouchard, J. J. et al. Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated Compartments. Mol. Cell 72, 19–36.e8 (2018). (PMID: 10.1016/j.molcel.2018.08.027)
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
Murakami, T. et al. ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function. Neuron 88, 678–690 (2015). (PMID: 10.1016/j.neuron.2015.10.030)
Dolgin, E. Drug startups coalesce around condensates. Nat. Biotechnol. 39, 123–125 (2021). (PMID: 10.1038/s41587-021-00828-4)
Ishigaki, S. & Sobue, G. Importance of Functional Loss of FUS in FTLD/ALS. Front. Mol. Biosci. 5, 44 (2018). (PMID: 10.3389/fmolb.2018.00044)
Efimova, A. D. et al. The FUS protein: Physiological functions and a role in amyotrophic lateral sclerosis. Mol. Biol. 51, 341–351 (2017). (PMID: 10.1134/S0026893317020091)
Krainer, G. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun. 12, 1085 (2021). (PMID: 10.1038/s41467-021-21181-9)
Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018). (PMID: 10.1126/science.aar7366)
Patel, A. et al. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 162, 1066–1077 (2015). (PMID: 10.1016/j.cell.2015.07.047)
Owen, I. et al. The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid-liquid phase separation. J. Cell Sci. 134, jcs258578 (2021). (PMID: 10.1242/jcs.258578)
Lerga, A. et al. Identification of an RNA Binding Specificity for the Potential Splicing Factor TLS. J. Biol. Chem. 276, 6807–6816 (2001).
Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant Phase Transition Drives Dynamic Substructure Formation in Ribonucleoprotein Droplets. Angew. Chem. Int. Ed. 56, 11354–11359 (2017). (PMID: 10.1002/anie.201703191)
Guillén-Boixet, J. et al. RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation. Cell 181, 346–361.e17 (2020). (PMID: 10.1016/j.cell.2020.03.049)
McCall, P. M. et al. Quantitative phase microscopy enables precise and efficient determination of biomolecular condensate composition. bioRxiv https://doi.org/10.1101/2020.10.25.352823 (2020).
Mullard, A. Biomolecular condensates pique drug discovery curiosity. Nat. Rev. Drug Discov. 18, 324–326 (2019).
Wright, M. A. et al. Analysis of αB-crystallin polydispersity in solution through native microfluidic electrophoresis. Analyst 144, 4413–4424 (2019). (PMID: 10.1039/C9AN00382G)
Arter, W. E., Levin, A., Krainer, G. & Knowles, T. P. J. Microfluidic approaches for the analysis of protein–protein interactions in solution. Biophys. Rev. 12, 575–585 (2020).
Herling, T. W., Levin, A., Saar, K. L., Dobson, C. M. & Knowles, T. P. J. Microfluidic approaches for probing amyloid assembly and behaviour. Lab Chip 18, 999–1016 (2018). (PMID: 10.1039/C7LC01241A)
Streets, A. M. & Huang, Y. Microfluidics for biological measurements with single-molecule resolution. Curr. Opin. Biotechnol. 25, 69–77 (2014). (PMID: 10.1016/j.copbio.2013.08.013)
Kim, S. et al. High-throughput single-molecule optofluidic analysis. Nat. Methods 8, 242–245 (2011). (PMID: 10.1038/nmeth.1569)
Wunderlich, B. et al. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nat. Protoc. 8, 1459–1474 (2013). (PMID: 10.1038/nprot.2013.082)
Saar, K. L. et al. Rapid two-dimensional characterisation of proteins in solution. Microsyst. Nanoeng. 5, 33 (2019). (PMID: 10.1038/s41378-019-0072-3)
Matos, M. J. et al. Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine‐Selective Protein Modification and Charge Modulation. Angew. Chem. 131, 6712–6716 (2019). (PMID: 10.1002/ange.201901405)
Scheidt, T. et al. Multidimensional protein characterisation using microfluidic post-column analysis. Lab Chip 20, 2663–2673 (2020). (PMID: 10.1039/D0LC00219D)
Duffy, D. C., McDonald, J. C., Schueller, O. J. A. & Whitesides, G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998). (PMID: 10.1021/ac980656z)
Arter, W. E. et al. Digital Sensing and Molecular Computation by an Enzyme-Free DNA Circuit. ACS Nano 14, 5763–5771 (2020).
Challa, P. K., Kartanas, T., Charmet, J. & Knowles, T. P. J. Microfluidic devices fabricated using fast wafer-scale LED-lithography patterning. Biomicrofluidics 11, 014113 (2017). (PMID: 10.1063/1.4976690)
Tan, S. H., Nguyen, N.-T., Chua, Y. C. & Kang, T. G. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4, 032204 (2010). (PMID: 10.1063/1.3466882)
Buell, A. K. et al. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl Acad. Sci. USA. 111, 7671–7676 (2014). (PMID: 10.1073/pnas.1315346111)
Hoyer, W. et al. Dependence of α-synuclein aggregate morphology on solution conditions. J. Mol. Biol. 322, 383–393 (2002). (PMID: 10.1016/S0022-2836(02)00775-1)
Lemaitre, R. P., Bogdanova, A., Borgonovo, B., Woodruff, J. B. & Drechsel, D. N. FlexiBAC: A versatile, open-source baculovirus vector system for protein expression, secretion, and proteolytic processing. BMC Biotechnol. 19, 20 (2019). (PMID: 10.1186/s12896-019-0512-z)
Risha, Y., Minic, Z., Ghobadloo, S. M. & Berezovski, M. V. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci. Rep. 10, 1–12 (2020). (PMID: 10.1038/s41598-020-70393-4)
Krainer, G., Hartmann, A. & Schlierf, M. FarFRET: Extending the Range in Single-Molecule FRET Experiments beyond 10 nm. Nano Lett. 15, 5826–5829 (2015).
Krainer, G. et al. A minimal helical-hairpin motif provides molecular-level insights into misfolding and pharmacological rescue of CFTR. Commun. Biol. 1, 154 (2018). (PMID: 10.1038/s42003-018-0153-0)
Enderlein, J., Robbins, D. L., Ambrose, W. P. & Keller, R. A. Molecular Shot Noise, Burst Size Distribution, and Single-Molecule Detection in Fluid Flow: Effects of Multiple Occupancy. J. Phys. Chem. A 102, 6089–6094 (1998). (PMID: 10.1021/jp9708299)
Landry, J. P., Ke, Y., Yu, G. L. & Zhu, X. D. Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based label-free assay platform. J. Immunol. Methods 417, 86–96 (2015). (PMID: 10.1016/j.jim.2014.12.011)
المشرفين على المادة: 0 (Biomarkers)
0 (Amyloid)
تواريخ الأحداث: Date Created: 20230206 Date Completed: 20230208 Latest Revision: 20230308
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9902533
DOI: 10.1038/s41467-023-35792-x
PMID: 36746944
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-023-35792-x