دورية أكاديمية

Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest.

التفاصيل البيبلوغرافية
العنوان: Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest.
المؤلفون: Hoenle PO; Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic., Staab M; Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany., Donoso DA; Departamento de Biología, Escuela Politécnica Nacional, Quito, Ecuador.; Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito, Ecuador., Argoti A; Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador., Blüthgen N; Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.
المصدر: The Journal of animal ecology [J Anim Ecol] 2023 Jul; Vol. 92 (7), pp. 1372-1387. Date of Electronic Publication: 2023 Feb 20.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: England NLM ID: 0376574 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2656 (Electronic) Linking ISSN: 00218790 NLM ISO Abbreviation: J Anim Ecol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Blackwell
Original Publication: Oxford, British Ecological Society.
مواضيع طبية MeSH: Ecosystem* , Ants*, Animals ; Phylogeny ; Forests ; Biodiversity
مستخلص: Microhabitat differentiation of species communities such as vertical stratification in tropical forests contributes to species coexistence and thus biodiversity. However, little is known about how the extent of stratification changes during forest recovery and influences community reassembly. Environmental filtering determines community reassembly in time (succession) and in space (stratification), hence functional and phylogenetic composition of species communities are highly dynamic. It is poorly understood if and how these two concurrent filters-forest recovery and stratification-interact. In a tropical forest chronosequence in Ecuador spanning 34 years of natural recovery, we investigated the recovery trajectory of ant communities in three overlapping strata (ground, leaf litter, lower tree trunk) by quantifying 13 traits, as well as the functional and phylogenetic diversity of the ants. We expected that functional and phylogenetic diversity would increase with recovery time and that each ant community within each stratum would show a distinct functional reassembly. We predicted that traits related to ant diet would show divergent trajectories reflecting an increase in niche differentiation with recovery time. On the other hand, traits related to the abiotic environment were predicted to show convergent trajectories due to a more similar microclimate across strata with increasing recovery age. Most of the functional traits and the phylogenetic diversity of the ants were clearly stratified, confirming previous findings. However, neither functional nor phylogenetic diversity increased with recovery time. Community-weighted trait means had complex relationships to recovery time and the majority were shaped by a statistical interaction between recovery time and stratum, confirming our expectations. However, most trait trajectories converged among strata with increasing recovery time regardless of whether they were related to ant diet or environmental conditions. We confirm the hypothesized interaction among environmental filters during the functional reassembly in tropical forests. Communities in individual strata respond differently to recovery, and possible filter mechanisms likely arise from both abiotic (e.g. microclimate) and biotic (e.g. diet) conditions. Since vertical stratification is prevalent across animal and plant taxa, our results highlight the importance of stratum-specific analysis in dynamic ecosystems and may generalize beyond ants.
(© 2023 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.)
References: Adams, B. J., Schnitzer, S. A., & Yanoviak, S. P. (2019). Connectivity explains local ant community structure in a neotropical forest canopy: A large-scale experimental approach. Ecology, 100(6), e02673. https://doi.org/10.1002/ecy.2673.
Agosti, D., Majer, J., Alonso, L. E., & Schultz, T. (2000). Ants: Standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press.
Anderson, M. J., & Walsh, D. C. (2013). PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs, 83(4), 557-574. https://doi.org/10.1890/12-2010.1.
Basset, Y., Cizek, L., Cuénoud, P., Didham, R. K., Novotny, V., Ødegaard, F., Roslin, T., Tishechkin, A. K., Schmidl, J., Winchester, N. N., Roubik, D. W., Aberlenc, H.-P., Bail, J., Barrios, H., Bridle, J. R., Castaño-Meneses, G., Corbara, B., Curletti, G., Duarte da Rocha, W., … Leponce, M. (2015). Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle. PLoS ONE, 10(12), e0144110. https://doi.org/10.1371/journal.pone.0144110.
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01.
Bihn, J. H., Gebauer, G., & Brandl, R. (2010). Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology, 91(3), 782-792. https://doi.org/10.1890/08-1276.1.
Blanchard, B. D., Nakamura, A., Cao, M., Chen, S. T., & Moreau, C. S. (2020). Spine and dine: A key defensive trait promotes ecological success in spiny ants. Ecology and Evolution, 10(12), 5852-5863. https://doi.org/10.1002/ece3.6322.
Blüthgen, N., Gebauer, G., & Fiedler, K. (2003). Disentangling a rainforest food web using stable isotopes: Dietary diversity in a species-rich ant community. Oecologia, 137(3), 426-435. https://doi.org/10.1007/s00442-003-1347-8.
Blüthgen, N., & Stork, N. E. (2007). Ant mosaics in a tropical rainforest in Australia and elsewhere: A critical review. Austral Ecology, 32(1), 93-104. https://doi.org/10.1111/j.1442-9993.2007.01744.x.
Buxton, J. T., Robert, K. A., Marshall, A. T., Dutka, T. L., & Gibb, H. (2021). A cross-species test of the function of cuticular traits in ants (Hymenoptera: Formicidae). Myrmecological News, 31, 31-46. https://doi.org/10.25849/myrmecol.news_031:031.
Cadotte, M. W., & Tucker, C. M. (2017). Should environmental filtering be abandoned? Trends in Ecology & Evolution, 32(6), 429-437. https://doi.org/10.1016/j.tree.2017.03.004.
Chazdon, R. L., Peres, C. A., Dent, D., Sheil, D., Lugo, A. E., Lamb, D., Stork, N. E., & Miller, S. E. (2009). The potential for species conservation in tropical secondary forests. Conservation Biology, 23(6), 1406-1417. https://doi.org/10.1111/j.1523-1739.2009.01338.x.
Chmel, K., Riegert, J., Paul, L., & Novotný, V. (2016). Vertical stratification of an avian community in new Guinean tropical rainforest. Population Ecology, 58(4), 535-547. https://doi.org/10.1007/s10144-016-0561-2.
Clusella-Trullas, S., van Wyk, J. H., & Spotila, J. R. (2007). Thermal melanism in ectotherms. Journal of Thermal Biology, 32, 235-245. https://doi.org/10.1016/j.jtherbio.2007.01.013.
Connor, E. F., & Simberloff, D. (1979). The assembly of species communities: Chance or competition? Ecology, 60(6), 1132-1140. https://doi.org/10.2307/1936961.
Crouzeilles, R., Curran, M., Ferreira, M. S., Lindenmayer, D. B., Grelle, C. E. V., & Rey Benayas, J. M. (2016). A global meta-analysis on the ecological drivers of forest restoration success. Nature Communications, 7(1), 11666. https://doi.org/10.1038/ncomms11666.
Davidson, D. W., Cook, S. C., & Snelling, R. R. (2004). Liquid-feeding performances of ants (Formicidae): Ecological and evolutionary implications. Oecologia, 139, 255-266. https://doi.org/10.1007/s00442-004-1508-4.
Davies, R. W., Edwards, D. P., & Edwards, F. A. (2020). Secondary tropical forests recover dung beetle functional diversity and trait composition. Animal Conservation, 23(5), 617-627. https://doi.org/10.1111/acv.12584.
de Almeida, D. R. A., Almeyda Zambrano, A. M., Broadbent, E. N., Wendt, A. L., Foster, P., Wilkinson, B. E., Salk, C., de Almeida Papa, D., Stark, S. C., Gorgens, E. B., Silva, C. A., Brancalion, P. H. S., Fagan, M., Meli, P., & Chazdon, R. (2020). Detecting successional changes in tropical forest structure using GatorEye drone-borne lidar. Biotropica, 52(6), 1155-1167.
de Bello, F., Carmona, C. P., Dias, A. T., Götzenberger, L., Moretti, M., & Berg, M. P. (2021). Handbook of trait-based ecology: From theory to R tools. Cambridge University Press.
de Bello, F., Carmona, C. P., Lepš, J., Szava-Kovats, R., & Pärtel, M. (2016). Functional diversity through the mean trait dissimilarity: Resolving shortcomings with existing paradigms and algorithms. Oecologia, 180(4), 933-940. https://doi.org/10.1007/s00442-016-3546-0.
de Bello, F., Lavergne, S., Meynard, C. N., Lepš, J., & Thuiller, W. (2010). The partitioning of diversity: Showing Theseus a way out of the labyrinth. Journal of Vegetation Science, 21(5), 992-1000. https://doi.org/10.1111/j.1654-1103.2010.01195.x.
de Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3(5), 744-749. https://doi.org/10.1038/s41559-019-0842-1.
del Pliego, P. G., Scheffers, B. R., Basham, E. W., Woodcock, P., Wheeler, C., Gilroy, J. J., Uribe, C. A. M., Haugaasen, T., Freckleton, R. P., & Edwards, D. P. (2016). Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biological Conservation, 201, 385-395. https://doi.org/10.1016/j.biocon.2016.07.038.
Dent, D. H., & Wright, S. J. (2009). The future of tropical species in secondary forests: A quantitative review. Biological Conservation, 142(12), 2833-2843. https://doi.org/10.1016/j.biocon.2009.05.035.
Diamond, J. M. (1975). Assembly of species communities. In J. M. Diamond & M. L. Cody (Eds.), Ecology and evolution of communities (pp. 342-344). Harvard University Press.
Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D., & Guénard, B. (2018). Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nature Communications, 9(1), 1778. https://doi.org/10.1038/s41467-018-04218-4.
Edwards, D. P., Massam, M. R., Haugaasen, T., & Gilroy, J. J. (2017). Tropical secondary forest regeneration conserves high levels of avian phylogenetic diversity. Biological Conservation, 209, 432-439. https://doi.org/10.1016/j.biocon.2017.03.006.
Edwards, F. A., Edwards, D. P., Larsen, T. H., Hsu, W. W., Benedick, S., Chung, A., Vun Khen, C., Wilcove, D. S., & Hamer, K. C. (2014). Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot?: Functional diversity and land-use change in Borneo. Animal Conservation, 17(2), 163-173. https://doi.org/10.1111/acv.12074.
Ellers, J., Berg, M. P., Dias, A. T. C., Fontana, S., Ooms, A., & Moretti, M. (2018). Diversity in form and function: Vertical distribution of soil fauna mediates multidimensional trait variation. Journal of Animal Ecology, 87(4), 933-944. https://doi.org/10.1111/1365-2656.12838.
Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, S. R., Essington, T. E., Holt, R. D., Jackson, J. B. C., Marquis, R. J., Oksanen, L., Oksanen, T., Paine, R. T., Pikitch, E. K., Ripple, W. J., Sandin, S. A., Scheffer, M., Schoener, T. W., … Wardle, D. A. (2011). Trophic downgrading of planet earth. Science, 333(6040), 301-306. https://doi.org/10.1126/science.1205106.
Feener, D. H., Lighton, J. R. B., & Bartholomew, G. A. (1988). Curvilinear allometry, energetics and foraging ecology: A comparison of leaf-cutting ants and army ants. Functional Ecology, 2, 509-520. https://doi.org/10.2307/2389394.
Fernández, F., Guerrero, R. J., & Delsinne, T. (2019). Hormigas de Colombia. Universidad Nacional de Colombia.
Floren, A., Wetzel, W., & Staab, M. (2014). The contribution of canopy species to overall ant diversity (Hymenoptera: Formicidae) in temperate and tropical ecosystems. Myrmecological News, 19, 65-74.
Fornoff, F., Staab, M., Zhu, C.-D., & Klein, A.-M. (2021). Multi-trophic communities re-establish with canopy cover and microclimate in a subtropical forest biodiversity experiment. Oecologia, 196(1), 289-301. https://doi.org/10.1007/s00442-021-04921-y.
Fowler, H. G., Forti, L. C., Brandao, C. R. F., Delabie, J. H. C., & Vasoncelos, H. L. (1991). Ecologia nutricional de formigas. In A. R. Panizzi & J. R. P. Parra (Eds.), Ecologia nutricional de insetos (pp. 131-223). Manole.
Fraser, L. H., Harrower, W. L., Garris, H. W., Davidson, S., Hebert, P. D., Howie, R., Moody, A., Polster, D., Schmitz, O. J., Sinclair, A. R. E., Starzomski, B. M., Sullivan, T. P., Turkington, R., & Wilson, D. (2015). A call for applying trophic structure in ecological restoration. Restoration Ecology, 23(5), 503-507. https://doi.org/10.1111/rec.12225.
Garcia, T. S., Paoletti, D. J., & Blaustein, A. R. (2009). Correlated trait responses to multiple selection pressures in larval amphibians reveal conflict avoidance strategies. Freshwater Biology, 54, 1066-1077. https://doi.org/10.1111/j.1365-2427.2008.02154.x.
Gibb, H., & Cunningham, S. A. (2013). Restoration of trophic structure in an assemblage of omnivores, considering a revegetation chronosequence. Journal of Applied Ecology, 50(2), 449-458. https://doi.org/10.1111/1365-2664.12054.
Gibb, H., & Parr, C. L. (2013). Does structural complexity determine the morphology of assemblages? An experimental test on three continents. PLoS ONE, 8(5), e64005. https://doi.org/10.1371/journal.pone.0064005.
Gibb, H., Sanders, N. J., Dunn, R. R., Arnan, X., Vasconcelos, H. L., Donoso, D. A., Andersen, A. N., Silva, R. R., Bishop, T. R., & Gomez, C. (2018). Habitat disturbance selects against both small and large species across varying climates. Ecography, 41(7), 1184-1193. https://doi.org/10.1111/ecog.03244.
Gibb, H., Stoklosa, J., Warton, D. I., Brown, A. M., Andrew, N. R., & Cunningham, S. A. (2015). Does morphology predict trophic position and habitat use of ant species and assemblages? Oecologia, 177(2), 519-531. https://doi.org/10.1007/s00442-014-3101-9.
Giller, P. S. (1996). The diversity of soil communities, the ‘poor man's tropical rainforest’. Biodiversity and Conservation, 5(2), 135-168. https://doi.org/10.1007/BF00055827.
Guariguata, M. R., & Ostertag, R. (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3), 185-206. https://doi.org/10.1016/j.foreco.2020.118885.
Guilherme, D. R., Souza, J. L. P., Franklin, E., Pequeno, P. A. C. L., das Chagas, A. C., & Baccaro, F. B. (2019). Can environmental complexity predict functional trait composition of ground-dwelling ant assemblages? A test across the Amazon Basin. Acta Oecologica, 99, 103434. https://doi.org/10.1016/j.actao.2019.05.004.
Hoenle, P. O., Donoso, D. A., Argoti, A., Staab, M., von Beeren, C., & Blüthgen, N. (2022a). Rapid ant community reassembly in a neotropical forest: Recovery dynamics and land-use legacy. Ecological Applications, e2559. https://doi.org/10.1002/eap.2559.
Hoenle, P. O., Donoso, D. A., Argoti, A., Staab, M., von Beeren, C., & Blüthgen, N. (2022b). Data from: Stratification and recovery time jointly shape ant functional re-assembly in a neotropical forest. Dryad Digital Repository, https://doi.org/10.5061/dryad.8cz8w9gs1.
Hoenle, P. O., Staab, M., Donoso, D. A., Argoti, A., & Blüthgen, N. (2023). Data from: Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest. Dryad Digital Repository, https://doi.org/10.5061/dryad.jsxksn0fc.
Hubbell, S. P. (2011). The unified neutral theory of biodiversity and biogeography (MPB-32). Princeton University Press. https://doi.org/10.1515/9781400837526.
Jucker, T., Hardwick, S. R., Both, S., Elias, D. M., Ewers, R. M., Milodowski, D. T., Swinfield, T., Swinfield, T., & Coomes, D. A. (2018). Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Global Change Biology, 24(11), 5243-5258. https://doi.org/10.1111/gcb.14415.
Jucker, T., Jackson, T. D., Zellweger, F., Swinfield, T., Gregory, N., Williamson, J., Slade, E., Phillips, J., Bittencourt, P., Blonder, B., Boyle, M., Ellwood, F., Hemprich-Bennett, D., Lewis, O., Matula, R., Senior, R., Shenkin, A., Svátek, M., & Coomes, D. A. (2020). A research agenda for microclimate ecology in human-modified tropical forests. Frontiers in Forests and Global Change, 2, 92. https://doi.org/10.3389/ffgc.2019.00092.
Kaspari, M. (1993). Body size and microclimate use in neotropical granivorous ants. Oecologia, 96(4), 500-507. https://doi.org/10.1007/BF00320507.
Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P., & Kay, A. (2015). Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Global Change Biology, 21(3), 1092-1102. https://doi.org/10.1111/gcb.12750.
Kaspari, M., & Weiser, M. D. (1999). The size-grain hypothesis and interspecific scaling in ants. Functional Ecology, 13(4), 530-538.
Kaspari, M., & Yanoviak, S. P. (2001). Bait use in tropical litter and canopy ants-Evidence of differences in nutrient Limitation1. Biotropica, 33(1), 207-211.
Keddy, P. A. (1992). Assembly and response rules: Two goals for predictive community ecology. Journal of Vegetation Science, 3(2), 157-164. https://doi.org/10.2307/3235676.
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463-1464. https://doi.org/10.1093/bioinformatics/btq166.
Kent, R., Lindsell, J. A., Vaglio Laurin, G., Valentini, R., & Coomes, D. A. (2015). Airborne LiDAR detects selectively logged tropical forest even in an advanced stage of recovery. Remote Sensing, 7(7), 8348-8367.
Klimes, P., Idigel, C., Rimandai, M., Fayle, T. M., Janda, M., Weiblen, G. D., & Novotny, V. (2012). Why are there more arboreal ant species in primary than in secondary tropical forests? Journal of Animal Ecology, 81(5), 1103-1112.
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29(5), 592-599. https://doi.org/10.1111/1365-2435.12345.
Kraft, N. J. B., Cornwell, W. K., Webb, C. O., & Ackerly, D. D. (2007). Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170(2), 271-283. https://doi.org/10.1086/519400.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26. http://doi.org/10.18637/jss.v082.i13.
Lach, L., Parr, C., & Abbott, K. (2010). Ant ecology. Oxford University Press.
Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299-305. https://doi.org/10.1890/08-2244.1.
Laliberté, E., Legendre, P., & Shipley, B. (2014). FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R Package Version 1.0-12.
Laurans, M., Hérault, B., Vieilledent, G., & Vincent, G. (2014). Vertical stratification reduces competition for light in dense tropical forests. Forest Ecology and Management, 329, 79-88. https://doi.org/10.1016/j.foreco.2014.05.059.
Law, S. J., Bishop, T. R., Eggleton, P., Griffiths, H., Ashton, L., & Parr, C. (2020). Darker ants dominate the canopy: Testing macroecological hypotheses for patterns in colour along a microclimatic gradient. Journal of Animal Ecology, 89(2), 347-359. https://doi.org/10.1111/1365-2656.13110.
Lee, R. H., & Guénard, B. (2019). Choices of sampling method bias functional components estimation and ability to discriminate assembly mechanisms. Methods in Ecology and Evolution, 10(6), 867-878. https://doi.org/10.1111/2041-210X.13175.
Lennox, G. D., Gardner, T. A., Thomson, J. R., Ferreira, J., Berenguer, E., Lees, A. C., Mac Nally, R., Aragão, L. E. O. C., Ferraz, S. F. B., Louzada, J., Moura, N. G., Oliveira, V. H. F., Pardini, R., Solar, R. R. C., Vaz-de Mello, F. Z., Vieira, I. C. G., & Barlow, J. (2018). Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Global Change Biology, 24(12), 5680-5694. https://doi.org/10.1111/gcb.14443.
Lenth, R. V. (2021). Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1.5.4. https://CRAN.R-project.org/package=emmeans.
Liu, C., Guénard, B., Blanchard, B., Peng, Y.-Q., & Economo, E. P. (2016). Reorganization of taxonomic, functional, and phylogenetic ant biodiversity after conversion to rubber plantation. Ecological Monographs, 86(2), 215-227. https://doi.org/10.1890/15-1464.1.
Longino, J. (2010). Ants of Costa Rica. https://ants.biology.utah.edu/AntsofCostaRica.html.
Luck, G. W., Lavorel, S., McIntyre, S., & Lumb, K. (2012). Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. Journal of Animal Ecology, 81(5), 1065-1076. https://doi.org/10.1111/j.1365-2656.2012.01974.x.
Lucky, A., Trautwein, M. D., Guenard, B. S., Weiser, M. D., & Dunn, R. R. (2013). Tracing the rise of ants-out of the ground. PLoS ONE, 8(12), e84012.
MacArthur, R., & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101(921), 377-385. https://doi.org/10.1086/282505.
Meli, P., Holl, K. D., Rey Benayas, J. M., Jones, H. P., Jones, P. C., Montoya, D., & Moreno Mateos, D. (2017). A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS ONE, 12(2), e0171368. https://doi.org/10.1371/journal.pone.0171368.
Mena, S., Kozak, K. M., Cárdenas, R. E., & Checa, M. F. (2020). Forest stratification shapes allometry and flight morphology of tropical butterflies. Proceedings of the Royal Society B, 287(1937), 20201071. https://doi.org/10.1098/rspb.2020.1071.
Mo, X.-X., Shi, L.-L., Zhang, Y.-J., Zhu, H., & Slik, J. F. (2013). Change in phylogenetic community structure during succession of traditionally managed tropical rainforest in Southwest China. PLoS ONE, 8(7), e71464. https://doi.org/10.1371/journal.pone.0071464.
Mottl, O., Yombai, J., Novotný, V., Leponce, M., Weiblen, G. D., & Klimeš, P. (2021). Inter-specific aggression generates ant mosaics in canopies of primary tropical rainforest. Oikos, 130(7), 1087-1099. https://doi.org/10.1111/oik.08069.
Neves, F. S., Antoniazzi, R., Camarota, F., Pacelhe, F. T., & Powell, S. (2021). Spatiotemporal dynamics of the ant community in a dry forest differ by vertical strata but not by successional stage. Biotropica, 53(2), 372-383. https://doi.org/10.1111/btp.12918.
Nooten, S. S., Chan, K. H., Schultheiss, P., Bogar, T. A., & Guénard, B. (2022). Ant body size mediates functional performance and species interactions in carrion decomposer communities. Functional Ecology, 36, 1279-1291. https://doi.org/10.1111/1365-2435.14039.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O'hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2010). Vegan: Community ecology package.
Parr, C. L., Dunn, R. R., Sanders, N. J., Weiser, M. D., Photakis, M., Bishop, T. R., Fitzpatrick, M. C., Arnan, X., Baccaro, F., & Brandão, C. R. (2017). GlobalAnts: A new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conservation and Diversity, 10(1), 5-20. https://doi.org/10.1111/icad.12211.
Peeters, C., Keller, R. A., Khalife, A., Fischer, G., Katzke, J., Blanke, A., & Economo, E. P. (2020). The loss of flight in ant workers enabled an evolutionary redesign of the thorax for ground labour. Frontiers in Zoology, 17(1), 1-13. https://doi.org/10.1186/s12983-020-00375-9.
Plowman, N. S., Mottl, O., Novotny, V., Idigel, C., Philip, F. J., Rimandai, M., & Klimes, P. (2020). Nest microhabitats and tree size mediate shifts in ant community structure across elevation in tropical rainforest canopies. Ecography, 43(3), 431-442. https://doi.org/10.1111/ecog.04730.
Qian, H., & Jin, Y. (2021). Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Diversity, 43(4), 255-263. https://doi.org/10.1016/j.pld.2020.11.005.
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. www.R-project.org.
Rocha-Ortega, M., Arnan, X., Ribeiro-Neto, J. D., Leal, I. R., Favila, M. E., & Martínez-Ramos, M. (2018). Taxonomic and functional ant diversity along a secondary successional gradient in a tropical forest. Biotropica, 50(2), 290-301. https://doi.org/10.1111/btp.12511.
Rühr, P. T., Edel, C., Frenzel, M., & Blanke, A. (2022). A bite force database of 654 insect species. bioRxiv. https://doi.org/10.1101/2022.01.21.477193.
Salazar, F., Reyes-Bueno, F., Sanmartin, D., & Donoso, D. A. (2015). Mapping continental Ecuadorian ant species. Sociobiology, 62(2), 132-162.
Santoandré, S., Filloy, J., Zurita, G. A., & Bellocq, M. I. (2019). Ant taxonomic and functional diversity show differential response to plantation age in two contrasting biomes. Forest Ecology and Management, 437, 304-313. https://doi.org/10.1016/j.foreco.2019.01.021.
Scheffers, B. R., Phillips, B. L., Laurance, W. F., Sodhi, N. S., Diesmos, A., & Williams, S. E. (2013). Increasing arboreality with altitude: A novel biogeographic dimension. Proceedings of the Royal Society B: Biological Sciences, 280(1770), 20131581. https://doi.org/10.1098/rspb.2013.1581.
Schmidt, F. A., Ribas, C. R., & Schoereder, J. H. (2013). How predictable is the response of ant assemblages to natural forest recovery? Implications for their use as bioindicators. Ecological Indicators, 24, 158-166. https://doi.org/10.1016/j.ecolind.2012.05.031.
Schofield, S. F., Bishop, T. R., & Parr, C. L. (2016). Morphological characteristics of ant assemblages (Hymenoptera: Formicidae) differ among contrasting biomes. Myrmecological News, 23, 129-137. https://doi.org/10.25849/myrmecol.news_023:129.
Schultz, N. M., Lawrence, P. J., & Lee, X. (2017). Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. Journal of Geophysical Research: Biogeosciences, 122(4), 903-917. https://doi.org/10.1002/2016JG003653.
Schulze, C. H., Linsenmair, K. E., & Fiedler, K. (2001). Understorey versus canopy: Patterns of vertical stratification and diversity among lepidoptera in a Bornean rain forest. In K. E. Linsenmair, A. J. Davis, B. Fiala, & M. R. Speight (Eds.), Tropical forest canopies: Ecology and management (Vol. 69, pp. 133-152). Springer Netherlands. https://doi.org/10.1007/978-94-017-3606-0_11.
Silva, R. R., & Brandão, C. R. F. (2010). Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs, 80(1), 107-124. https://doi.org/10.1890/08-1298.1.
Skarbek, C. J., Noack, M., Bruelheide, H., Härdtle, W., von Oheimb, G., Scholten, T., Seitz, S., & Staab, M. (2020). A tale of scale: Plot but not neighbourhood tree diversity increases leaf litter ant diversity. Journal of Animal Ecology, 89(2), 299-308. https://doi.org/10.1111/1365-2656.13115.
Sommer, S., & Wehner, R. (2012). Leg allometry in ants: Extreme long-leggedness in thermophilic species. Arthropod Structure & Development, 41, 71-77.
Sosiak, C. E., & Barden, P. (2021). Multidimensional trait morphology predicts ecology across ant lineages. Functional Ecology, 35(1), 139-152. https://doi.org/10.1111/1365-2435.13697.
Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G., & Mirotchnick, N. (2012). Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 15, 637-648. https://doi.org/10.1111/j.1461-0248.2012.01795.x.
Staab, M., Schuldt, A., Assmann, T., Bruelheide, H., & Klein, A.-M. (2014). Ant community structure during forest succession in a subtropical forest in south-East China. Acta Oecologica, 61, 32-40. https://doi.org/10.1016/j.actao.2014.10.003.
Tucker, C. M., Cadotte, M. W., Carvalho, S. B., Davies, T. J., Ferrier, S., Fritz, S. A., Grenyer, R., Helmus, M. R., Jin, L. S., Mooers, A. O., Pavoine, S., Purschke, O., Redding, D. W., Rosauer, D. F., Winter, M., & Mazel, F. (2017). A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 92, 698-715. https://doi.org/10.1111/brv.12252.
Villéger, S., Mason, N. W., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290-2301. https://doi.org/10.1890/07-1206.1.
Weiser, M. D., & Kaspari, M. (2006). Ecological morphospace of New World ants. Ecological Entomology, 31(2), 131-142. https://doi.org/10.1111/j.0307-6946.2006.00759.x.
Whitworth, A., Beirne, C., Pillco Huarcaya, R., Whittaker, L., Serrano Rojas, S. J., Tobler, M. W., & MacLeod, R. (2019). Human disturbance impacts on rainforest mammals are most notable in the canopy, especially for larger-bodied species. Diversity and Distributions, 25(7), 1166-1178. https://doi.org/10.1111/ddi.12930.
Whitworth, A., Villacampa, J., Brown, A., Huarcaya, R. P., Downie, R., & MacLeod, R. (2016). Past human disturbance effects upon biodiversity are greatest in the canopy; A case study on rainforest butterflies. PLoS ONE, 11(3), e0150520. https://doi.org/10.1371/journal.pone.0150520.
Widenfalk, L. A., Malmström, A., Berg, M. P., & Bengtsson, J. (2016). Small-scale collembola community composition in a pine forest soil - Overdispersion in functional traits indicates the importance of species interactions. Soil Biology and Biochemistry, 103, 52-62. https://doi.org/10.1016/j.soilbio.2016.08.006.
Wittman, S. E., Sanders, N. J., Ellison, A. M., Jules, E. S., Ratchford, J. S., & Gotelli, N. J. (2010). Species interactions and thermal constraints on ant community structure. Oikos, 119(3), 551-559. https://doi.org/10.1111/j.1600-0706.2009.17792.x.
Wong, M. K., Guénard, B., & Lewis, O. T. (2019). Trait-based ecology of terrestrial arthropods. Biological Reviews, 94(3), 999-1022. https://doi.org/10.1111/brv.12488.
Xing, S., Hood, A. S., Dial, R. J., & Fayle, T. M. (2022). Species turnover in ant assemblages is greater horizontally than vertically in the world's tallest tropical forest. Ecology and Evolution, 12(8), e9158. https://doi.org/10.1002/ece3.9158.
فهرسة مساهمة: Keywords: Chocó; Ecuador; chronosequence; community weighted means; environmental filters; forest regeneration; functional traits; phylogeny
سلسلة جزيئية: Dryad 10.5061/dryad.jsxksn0fc
تواريخ الأحداث: Date Created: 20230207 Date Completed: 20230706 Latest Revision: 20230718
رمز التحديث: 20230718
DOI: 10.1111/1365-2656.13896
PMID: 36748273
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2656
DOI:10.1111/1365-2656.13896