دورية أكاديمية

Combating cholera by building predictive capabilities for pathogenic Vibrio cholerae in Yemen.

التفاصيل البيبلوغرافية
العنوان: Combating cholera by building predictive capabilities for pathogenic Vibrio cholerae in Yemen.
المؤلفون: Usmani M; GeoHealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA., Brumfield KD; Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA.; Institute for Advanced Computer Studies, University of Maryland, University of Maryland, College Park, MD, 20742, USA., Magers BM; GeoHealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA., Chaves-Gonzalez J; United Nations Office for the Coordination of Humanitarian Affairs, New York, NY, USA., Ticehurst H; Meteorological Office, Exeter, UK., Barciela R; Meteorological Office, Exeter, UK., McBean F; Foreign, Commonwealth and Development Office, London, UK., Colwell RR; Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA.; Institute for Advanced Computer Studies, University of Maryland, University of Maryland, College Park, MD, 20742, USA., Jutla A; GeoHealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA. antar.jutla@essie.ufl.edu.
المصدر: Scientific reports [Sci Rep] 2023 Feb 08; Vol. 13 (1), pp. 2255. Date of Electronic Publication: 2023 Feb 08.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Vibrio cholerae* , Cholera*/epidemiology , Cholera*/prevention & control , Cholera*/microbiology, Humans ; Yemen/epidemiology ; Disease Outbreaks/prevention & control ; Public Health
مستخلص: Cholera remains a global public health threat in regions where social vulnerabilities intersect with climate and weather processes that impact infectious Vibrio cholerae. While access to safe drinking water and sanitation facilities limit cholera outbreaks, sheer cost of building such infrastructure limits the ability to safeguard the population. Here, using Yemen as an example where cholera outbreak was reported in 2016, we show how predictive abilities for forecasting risk, employing sociodemographical, microbiological, and climate information of cholera, can aid in combating disease outbreak. An epidemiological analysis using Bradford Hill Criteria was employed in near-real-time to understand a predictive model's outputs and cholera cases in Yemen. We note that the model predicted cholera risk at least four weeks in advance for all governorates of Yemen with overall 72% accuracy (varies with the year). We argue the development of anticipatory decision-making frameworks for climate modulated diseases to design intervention activities and limit exposure of pathogens preemptively.
(© 2023. The Author(s).)
References: Colwell, R. R. Global climate and infectious disease: The cholera paradigm. Science 274, 2025–2031 (1996). (PMID: 10.1126/science.274.5295.2025)
Bhishagratna, K. L. et al. An English translation of The Sushruta Samhita: based on original Sanskrit text. vol. 2 (author, 1911).
Pollitzer, R. Cholera studies. 1. History of the disease. Bull World Health Organ 10, 421–461 (1954).
Mukerjee, S., Basu, S. & Bhattacharya, P. A new trend in cholera epidemiology. BMJ 2, 837–839 (1965). (PMID: 10.1136/bmj.2.5466.837)
Pollitzer, R., Swaroop, S. & Burrows, W. Cholera. (World Health Organization, 1959).
Kaneko, T. & Colwell, R. R. Adsorption of vibrio parahaemolyticus onto chitin and copepods. Appl. Microbiol. 29, 269–274 (1975). (PMID: 10.1128/am.29.2.269-274.1975)
Kaper, J., Lockman, H., Colwell, R. R. & Joseph, S. W. Ecology, serology, and enterotoxin production of Vibrio cholerae in Chesapeake Bay. Appl. Environ. Microbiol. 37, 91–103 (1979). (PMID: 10.1128/aem.37.1.91-103.1979)
Tamplin, M. L., Gauzens, A. L., Huq, A., Sack, D. A. & Colwell, R. R. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl. Environ. Microbiol. 56, 1977–1980 (1990). (PMID: 10.1128/aem.56.6.1977-1980.1990)
Lobitz, B. et al. Climate and infectious disease: Use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc. Natl. Acad. Sci. 97, 1438–1443 (2000). (PMID: 10.1073/pnas.97.4.1438)
Bougoudogo, F. Cholera in Africa and in Latin America. Bull Soc Pathol Exot 91, 406 (1998).
Colwell, R. R. & Huq, A. Environmental reservoir of vibrio cholerae the causative agent of Cholera. Ann. N.Y. Acad. Sci. 740, 44–54 (1994). (PMID: 10.1111/j.1749-6632.1994.tb19852.x)
Colwell, R. R. & Huq, A. Global microbial ecology: biogeography and diversity of Vibrios as a model. J. Appl. Microbiol. 85, 134S-137S (1998). (PMID: 10.1111/j.1365-2672.1998.tb05292.x)
Roszak, D. B. & Colwell, R. R. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51, 365–379 (1987). (PMID: 10.1128/mr.51.3.365-379.1987)
Akanda, A. S., Griffiths, J. K., Colwell, R., Islam, S. & Jutla, A. S. Warming oceans, phytoplankton, and river discharge: Implications for cholera outbreaks. Am. J. Trop. Med. Hyg. 85, 303–308 (2011). (PMID: 10.4269/ajtmh.2011.11-0181)
Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. U.S.A. 113, E5062–E5071 (2016). (PMID: 10.1073/pnas.1609157113)
Hashizume, M. et al. The effect of rainfall on the incidence of cholera in Bangladesh. Epidemiology 19, 103–110 (2008). (PMID: 10.1097/EDE.0b013e31815c09ea)
Koelle, K., Rodó, X., Pascual, M., Yunus, Md. & Mostafa, G. Refractory periods and climate forcing in cholera dynamics. Nature 436, 696–700 (2005). (PMID: 10.1038/nature03820)
Miller, C., Drasar, B. & Feachem, R. Cholera and estuarine salinity in Calcutta and London. Lancet 319(8283), 1216–1218 (1982). (PMID: 10.1016/S0140-6736(82)92340-6)
Neogi, S. B. et al. Environmental and hydroclimatic factors influencing Vibrio populations in the estuarine zone of the Bengal delta. Environ. Monit. Assess. 190(10), 1–16 (2018). (PMID: 10.1007/s10661-018-6925-7)
de Magny, G. C. et al. Environmental signatures associated with cholera epidemics. Proc. Natl. Acad. Sci. 105, 17676–17681 (2008). (PMID: 10.1073/pnas.0809654105)
Lipp, E. K., Huq, A. & Colwell, R. R. Effects of global climate on infectious disease: The cholera model. CMR 15, 757–770 (2002). (PMID: 10.1128/CMR.15.4.757-770.2002)
Khan, R. et al. Assessment of risk of cholera in Haiti following Hurricane Matthew. Am. J. Trop. Med. Hyg. 97, 896–903 (2017). (PMID: 10.4269/ajtmh.17-0048)
Khan, R. et al. Long-range river discharge forecasting using the gravity recovery and climate experiment. J. Water Resour. Plann. Manage. 145, 06019005 (2019). (PMID: 10.1061/(ASCE)WR.1943-5452.0001072)
Huq, A. et al. Environmental factors influencing epidemic cholera. Am. J. Trop. Med. Hyg. 89, 597–607 (2013). (PMID: 10.4269/ajtmh.12-0721)
Clemens, J. D., Nair, G. B., Ahmed, T., Qadri, F. & Holmgren, J. Cholera. The Lancet 390, 1539–1549 (2017). (PMID: 10.1016/S0140-6736(17)30559-7)
Jutla, A. S., Akanda, A. S. & Islam, S. Tracking cholera in coastal regions using satellite observations: Tracking cholera in coastal regions using satellite observations. JAWRA J. Am. Water Resour. Assoc. 46, 651–662 (2010). (PMID: 10.1111/j.1752-1688.2010.00448.x)
Ali, M., Nelson, A. R., Lopez, A. L. & Sack, D. A. Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 9, e0003832 (2015). (PMID: 10.1371/journal.pntd.0003832)
Brumfield, K. D. et al. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ. Microbiol. https://doi.org/10.1111/1462-2920.15716 (2021). (PMID: 10.1111/1462-2920.15716)
Sharp, J. & Salaam-Blyther, T. Yemen: Cholera Outbreak. 3 https://crsreports.congress.gov/product/details?prodcode=IN10729 (2017).
WHO. Weekly epidemiological record (Vol. 93). at https://apps.who.int/iris/bitstream/handle/10665/274654/WER9338.pdf?ua=1 (2018).
Lyons, K. Yemen’s cholera outbreak now the worst in history as millionth case looms. The Guardian (2017).
Usmani, M. et al. A review of the environmental trigger and transmission components for prediction of cholera. TropicalMed 6, 147 (2021). (PMID: 10.3390/tropicalmed6030147)
Islam, M. S., Alam, M. J. & Neogi, P. K. B. Seasonality and toxigenicity ofVibrio cholerae non-01 isolated from different components of pond ecosystems of Dhaka City Bangladesh. World J. Microbiol. Biotechnol. 8, 160–163 (1992). (PMID: 10.1007/BF01195838)
Alam, M. et al. Toxigenic vibrio cholerae in the aquatic environment of mathbaria Bangladesh. AEM 72, 2849–2855 (2006). (PMID: 10.1128/AEM.72.4.2849-2855.2006)
Alam, M. et al. Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc. Natl. Acad. Sci. 104, 17801–17806 (2007). (PMID: 10.1073/pnas.0705599104)
Huq, A. et al. Critical factors influencing the occurrence of vibrio cholerae in the environment of Bangladesh. AEM 71, 4645–4654 (2005). (PMID: 10.1128/AEM.71.8.4645-4654.2005)
Cash, B. A., Rodó, X. & Kinter, J. L. Links between tropical pacific SST and cholera incidence in Bangladesh: Role of the eastern and central tropical pacific. J. Clim. 21, 4647–4663 (2008). (PMID: 10.1175/2007JCLI2001.1)
Usmani, M. et al. Predictive Intelligence for Cholera in Ukraine? GeoHealth https://doi.org/10.1029/2022GH000681 (2022). (PMID: 10.1029/2022GH000681)
Jutla, A., Aldaach, H., Akanda, A. S., Huq, A. & Colwell, R. R. Satellite based assessment of hydroclimatic conditions related to cholera in Zimbabwe. PLOS-One https://doi.org/10.1371/journal.pone.0137828 (2015). (PMID: 10.1371/journal.pone.0137828)
Khan, R. et al. Evaluation of risk of cholera after a natural disaster: Lessons learned from the 2015 Nepal Earthquake. J. Water Resour. Plann. Manage. 144, 04018044 (2018). (PMID: 10.1061/(ASCE)WR.1943-5452.0000929)
Legros, D. Global cholera epidemiology: Opportunities to Reduce the burden of cholera by 2030. J. Infect. Dis. 218, S137–S140 (2018). (PMID: 10.1093/infdis/jiy486)
Mosley, J. F., Smith, L. L., Brantley, P., Locke, D. & Como, M. Vaxchora: The first FDA-approved cholera vaccination in the United States. P T 42, 638–640 (2017).
Huq, A. et al. A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries. Appl. Environ. Microbiol. 62, 2508–2512 (1996). (PMID: 10.1128/aem.62.7.2508-2512.1996)
Colwell, R. R. et al. Reduction of cholera in Bangladeshi villages by simple filtration. Proc. Natl. Acad. Sci. 100, 1051–1055 (2003). (PMID: 10.1073/pnas.0237386100)
Taylor, D. L., Kahawita, T. M., Cairncross, S. & Ensink, J. H. J. The impact of water, sanitation and hygiene interventions to control cholera: A systematic review. PLoS ONE 10, e0135676 (2015). (PMID: 10.1371/journal.pone.0135676)
Fedak, K. M., Bernal, A., Capshaw, Z. A. & Gross, S. Applying the Bradford Hill criteria in the 21st century: How data integration has changed causal inference in molecular epidemiology. Emerg. Themes Epidemiol. 12, 14 (2015). (PMID: 10.1186/s12982-015-0037-4)
Hill, A. B. The environment and disease: association or causation?. Proc. R. Soc. Med. 58, 295–300 (1965).
Lucas, R. M. & McMichael, A. J. Association or causation: evaluating links between “environment and disease”. Bull. World Health Organ. 83, 792–795 (2005).
Pascual, M. Cholera dynamics and El Nino-southern oscillation. Science 289, 1766–1769 (2000). (PMID: 10.1126/science.289.5485.1766)
Akanda, A. S., Jutla, A. S. & Islam, S. Dual peak cholera transmission in Bengal Delta: A hydroclimatological explanation. Geophys. Res. Lett. 36, L19401 (2009). (PMID: 10.1029/2009GL039312)
Huq, A. et al. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl. Environ. Microbiol. 45, 275–283 (1983). (PMID: 10.1128/aem.45.1.275-283.1983)
Cash, R. A. et al. Response of man to infection with vibrio cholera. I. Clinical, serologic, and bacteriologic responses to a known inoculum. J. Infect. Dis. 129, 45–52 (1974). (PMID: 10.1093/infdis/129.1.45)
Colwell, R. R. et al. Viable but non-culturable Vibrio cholerae O1 revert to a cultivable state in the human intestine. World J. Microbiol. Biotechnol. 12, 28–31 (1996). (PMID: 10.1007/BF00327795)
Alam, M. et al. Clonal transmission, dual peak, and off-season cholera in Bangladesh. Infect. Ecol. Epidemiol. 1, 7273. https://doi.org/10.3402/iee.v1i0.7273 (2011). (PMID: 10.3402/iee.v1i0.7273)
Rinaldo, A. et al. Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proc. Natl. Acad. Sci. 109, 6602–6607 (2012). (PMID: 10.1073/pnas.1203333109)
Louis, V. R. et al. Predictability of Vibrio cholerae in Chesapeake Bay. AEM 69, 2773–2785 (2003). (PMID: 10.1128/AEM.69.5.2773-2785.2003)
Lukinmaa, S. et al. Territorial waters of the Baltic Sea as a source of infections caused by Vibrio cholerae non-O1, non-O139: report of 3 hospitalized cases. Diagn. Microbiol. Infect. Dis. 54, 1–6 (2006). (PMID: 10.1016/j.diagmicrobio.2005.06.020)
Andersson, Y. & Ekdahl, K. Wound infections due to Vibrio cholerae in Sweden after swimming in the Baltic Sea, summer 2006. Weekly Releases (1997–2007) 11, 3013 (2006).
Vezzulli, L. et al. Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J. 6, 21–30 (2012). (PMID: 10.1038/ismej.2011.89)
de Magny, G. C., Cazelles, B. & Guégan, J.-F. Cholera threat to humans in Ghana is influenced by both global and regional climatic variability. EcoHealth 3, 223–231 (2007). (PMID: 10.1007/s10393-006-0061-5)
Ngwa, M. C. et al. Cholera in Cameroon, 2000–2012: Spatial and temporal analysis at the operational (Health District) and sub climate levels. PLoS Negl. Trop. Dis. 10, e0005105 (2016). (PMID: 10.1371/journal.pntd.0005105)
Asadgol, Z. et al. How climate change can affect cholera incidence and prevalence? A systematic review. Environ. Sci. Pollut. Res. 27, 34906–34926 (2020). (PMID: 10.1007/s11356-020-09992-7)
Martinez, R. M., Megli, C. J. & Taylor, R. K. Growth and Laboratory Maintenance of Vibrio cholerae. Curr. Protoc. Microbiol. 17, 6A11-6A17 (2010). (PMID: 10.1002/9780471729259.mc06a01s17)
Hood, M. A. & Winter, P. A. Attachment of Vibrio cholerae under various environmental conditions and to selected substrates. FEMS Microbiol. Ecol. 22, 215–223 (2006). (PMID: 10.1111/j.1574-6941.1997.tb00373.x)
Paz, S. Impact of Temperature Variability on Cholera Incidence in Southeastern Africa, 1971–2006. EcoHealth 6, 340–345 (2009). (PMID: 10.1007/s10393-009-0264-7)
Sasaki, S., Suzuki, H., Fujino, Y., Kimura, Y. & Cheelo, M. Impact of drainage networks on cholera outbreaks in Lusaka Zambia. Am. J. Public Health 99, 1982–1987 (2009). (PMID: 10.2105/AJPH.2008.151076)
Colwell, R. R., Huq, A., Chowdhury, M. A. R., Xu, B. & Brayton, P. R. Serogroup conversion of Vibrio cholerae. Can. J. Microbiol. 41, 946–950 (1995). (PMID: 10.1139/m95-131)
Montilla, R., Chowdhury, M. A. R., Huq, A., Xu, B. & Colwell, R. R. Serogroup conversion of Vibrio cholerae non-O1 to Vibrio cholerae O1: effect of growth state of cells, temperature, and salinity. Can. J. Microbiol. 42, 87–93 (1996). (PMID: 10.1139/m96-014)
Mishra, A. et al. Amplified fragment length polymorphism of clinical and environmental Vibrio cholerae from a freshwater environment in a cholera-endemic area India. BMC Infect. Dis. 11, 249 (2011). (PMID: 10.1186/1471-2334-11-249)
Grim, C. J. et al. RNA colony blot hybridization method for enumeration of culturable vibrio cholerae and vibrio mimicus bacteria. Appl. Environ. Microbiol. 75, 5439–5444 (2009). (PMID: 10.1128/AEM.02007-08)
Nasr-Azadani, F. et al. Hydroclimatic sustainability assessment of changing climate on cholera in the Ganges-Brahmaputra basin. Adv. Water Resour. https://doi.org/10.1016/j.advwatres.2016.11.018 (2016). (PMID: 10.1016/j.advwatres.2016.11.018)
Alam, M. et al. Effect of transport at ambient temperature on detection and isolation of Vibrio cholerae from environmental samples. Appl. Environ. Microbiol. 72, 2185–2190 (2006). (PMID: 10.1128/AEM.72.3.2185-2190.2006)
Jutla, A., Khan, R. & Colwell, R. Natural disasters and cholera outbreaks: Current understanding and future outlook. Curr. Environ. Health Rpt 4, 99–107 (2017). (PMID: 10.1007/s40572-017-0132-5)
ACAPS. Yemen Complex Crisis. https://www.acaps.org/country/yemen/crisis/complex-crisis (2020).
Grad, Y. H., Miller, J. C. & Lipsitch, M. Cholera modeling: Challenges to quantitative analysis and predicting the impact of interventions. Epidemiology 23, 523–530 (2012). (PMID: 10.1097/EDE.0b013e3182572581)
Huq, A., West, P. A., Small, E. B., Huq, M. I. & Colwell, R. R. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms. Appl. Environ. Microbiol. 48, 420–424 (1984). (PMID: 10.1128/aem.48.2.420-424.1984)
Skorupski, K. & Taylor, R. K. Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol. Microbiol. 25, 1003–1009 (1997). (PMID: 10.1046/j.1365-2958.1997.5481909.x)
Schuhmacher, D. A. & Klose, K. E. Environmental signals modulate ToxT-dependent virulence factor expression in vibrio cholerae. J. Bacteriol. 181, 1508–1514 (1999). (PMID: 10.1128/JB.181.5.1508-1514.1999)
Singleton, F. L., Attwell, R. W., Jangi, M. S. & Colwell, R. R. Influence of salinity and organic nutrient concentration on survival and growth of Vibrio cholerae in aquatic microcosms. Appl. Environ. Microbiol. 43, 1080–1085 (1982). (PMID: 10.1128/aem.43.5.1080-1085.1982)
Ravel, J., Knight, I. T., Monahan, C. E., Hill, R. T. & Colwell, R. R. Temperature-induced recovery of Vibrio cholerae from the viable but nonculturable state: growth or resuscitation?. Microbiology 141, 377–383 (1995). (PMID: 10.1099/13500872-141-2-377)
Eiler, A., Gonzalez-Rey, C., Allen, S. & Bertilsson, S. Growth response of Vibrio cholerae and other Vibrio spp. to cyanobacterial dissolved organic matter and temperature in brackish water: Cyanobacterial DOM, temperature and Vibrio growth. FEMS Microbiol. Ecol. 60, 411–418 (2007). (PMID: 10.1111/j.1574-6941.2007.00303.x)
The Biology of Vibrios. (ASM Press, 2006). https://doi.org/10.1128/9781555815714 .
Stauder, M., Vezzulli, L., Pezzati, E., Repetto, B. & Pruzzo, C. Temperature affects Vibrio cholerae O1 El Tor persistence in the aquatic environment via an enhanced expression of GbpA and MSHA adhesins: Temperature affects V. cholerae in the aquatic environment. Environ. Microbiol. Rep. 2, 140–144 (2010). (PMID: 10.1111/j.1758-2229.2009.00121.x)
McCarthy, S. A. Effects of temperature and salinity on survival of toxigenicVibrio cholerae O1 in seawater. Microb. Ecol. 31(2), 167–175 (1996). (PMID: 10.1007/BF00167862)
تواريخ الأحداث: Date Created: 20230209 Date Completed: 20230210 Latest Revision: 20230318
رمز التحديث: 20240513
مُعرف محوري في PubMed: PMC9908932
DOI: 10.1038/s41598-022-22946-y
PMID: 36755108
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-022-22946-y