دورية أكاديمية

A single post-exposure oxime RS194B treatment rapidly reactivates acetylcholinesterase and reverses acute symptoms in macaques exposed to diethylphosphorothioate parathion and chlorpyrifos insecticides.

التفاصيل البيبلوغرافية
العنوان: A single post-exposure oxime RS194B treatment rapidly reactivates acetylcholinesterase and reverses acute symptoms in macaques exposed to diethylphosphorothioate parathion and chlorpyrifos insecticides.
المؤلفون: Rosenberg YJ; PlantVax Inc, Rockville, Maryland, USA., Garcia K; IIT Research Institute, Chicago, Illinois, USA., Diener J; IIT Research Institute, Chicago, Illinois, USA., Sullivan D; IIT Research Institute, Chicago, Illinois, USA., Donahue S; Teledyne FLIR, Pittsburg, Pennsylvania, USA., Mao L; PlantVax Inc, Rockville, Maryland, USA., Lees J; PlantVax Inc, Rockville, Maryland, USA., Jiang X; PlantVax Inc, Rockville, Maryland, USA., Urban LA; PlantVax Inc, Rockville, Maryland, USA., Momper JD; Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA., Ho KY; Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA., Taylor P; Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA.
المصدر: Journal of neurochemistry [J Neurochem] 2024 Apr; Vol. 168 (4), pp. 370-380. Date of Electronic Publication: 2023 Apr 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of the International Society for Neurochemistry Country of Publication: England NLM ID: 2985190R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1471-4159 (Electronic) Linking ISSN: 00223042 NLM ISO Abbreviation: J Neurochem Subsets: MEDLINE
أسماء مطبوعة: Publication: 2001- : Oxford, UK : Wiley on behalf of the International Society for Neurochemistry
Original Publication: New York : Raven Press
مواضيع طبية MeSH: Acetamides* , Chlorpyrifos*/toxicity , Cholinesterase Reactivators*/chemistry , Cholinesterase Reactivators*/pharmacology , Insecticides*/toxicity , Nerve Agents* , Parathion*/adverse effects , Parathion*/toxicity, Animals ; Mice ; Acetylcholinesterase/chemistry ; Butyrylcholinesterase/chemistry ; Cholinesterase Inhibitors/chemistry ; Macaca ; Organophosphorus Compounds/toxicity ; Oximes/pharmacology ; Oximes/chemistry ; Oximes/therapeutic use
مستخلص: Millions of individuals globally suffer from inadvertent, occupational or self-harm exposures from organophosphate (OP) insecticides, significantly impacting human health. Similar to nerve agents, insecticides are neurotoxins that target and inhibit acetylcholinesterase (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with an oxime to reactivate the OP-inhibited AChE. However, animal model studies and recent clinical trials using insecticide-poisoned individuals have shown minimal clinical benefits of the currently approved oximes and their efficacy as antidotes has been debated. Currently used oximes either reactivate poorly, do not readily cross the blood-brain barrier (BBB), or are rapidly cleared from the circulation and must be repeatedly administered. Zwitterionic oximes of unbranched and simplified structure, for example RS194B, have been developed that efficiently cross the BBB resulting in reactivation of OP-inhibited AChE and dramatic reversal of severe clinical symptoms in mice and macaques exposed to OP insecticides or nerve agents. Thus, a single IM injection of RS194B has been shown to rapidly restore blood AChE and butyrylcholinesterase (BChE) activity, reverse cholinergic symptoms, and prevent death in macaques following lethal inhaled sarin and paraoxon exposure. The present macaque studies extend these findings and assess the ability of post-exposure RS194B treatment to counteract oral poisoning by highly toxic diethylphosphorothioate insecticides such as parathion and chlorpyrifos. These OPs require conversion by P450 in the liver of the inactive thions to the active toxic oxon forms, and once again demonstrated RS194B efficacy to reactivate and alleviate clinical symptoms within 60 mins of a single IM administration. Furthermore, when delivered orally, the Tmax of RS194B at 1-2 h was in the same range as those administered IM but were maintained in the circulation for longer periods greatly facilitating the use of RS194B as a non-invasive treatment, especially in isolated rural settings.
(© 2023 International Society for Neurochemistry.)
References: Amitai, G., Moorad, D., Adani, R., & Doctor, B. P. (1998). Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos‐oxon. Biochemical Pharm‐Acology, 56(3), 293–299. https://doi.org/10.1016/s0006‐2952(98)00035‐5.
Atterberry, T. T., Burnett, W. T., & Chambers, J. E. (1997). Age‐related differences in parathion and chlorpyrifos toxicity in male rats: Target and nontarget esterase sensitivity and cytochrome P450‐mediated metabolism. Toxicology and Applied Pharmacology, 147(2), 411–418. https://doi.org/10.1006/taap.1997.8303.
Backer, B. S., Meek, E. C., Ross, M. K., & Chambers, J. E. (2022). Pharmacokinetics of three novel pyridinium aldoxime acetylcholinesterase reactivators in female rats. Toxicology and Applied Pharmacology, 446, 116046. https://doi.org/10.1016/j.taap.2022.116046.
Boedeker, W., Watts, M., Clausing, P., & Marquez, E. (2020). The global distribution of acute unintentional pesticide poisoning: Estimations based on a systematic review. BMC Public Health, 20, 1875. https://doi.org/10.1186/s12889‐020‐09939‐0.
Buckley, N. A., Eddleston, M., Li, Y., Bevan, M., & Robertson, J. (2011). Oximes for acute organophosphate pesticide poisoning. Cochrane Database of Systematic Reviews, 2, CD005085.
Bunya, N., Sawamoto, K., Benoit, H., & Bird, S. B. (2016). The effect of parathion on red blood cell acetylcholinesterase in the wistar rat. Journal of Toxicology, 2016, 4576952. https://doi.org/10.1155/2016/4576952.
Buratti, F. M., Volpe, M. T., Meneguz, A., Vittozzi, L., & Testai, E. (2003). CYP‐specific bioactivation of four organophosphorothioate pesticides by human liver microsomes. Toxicology and Applied Pharmacology, 186(3), 143–154. https://doi.org/10.1016/s0041‐008x(02)00027‐3.
Čadež, T., Kolić, D., Šinko, G., & Kovarik, Z. (2021). Assessment of four organophosphorus pesticides as inhibitors of human acetylcholinesterase and butyrylcholinesterase. Scientific Reports, 11(1), 21486. https://doi.org/10.1038/s41598‐021‐00953‐9organophosphates.
Cadieux, C. L., Wang, H., Zhang, Y., Koenig, J. A., Shih, T. M., McDonough, J., Koh, J., & Cerasoli, D. (2016). Probing the activity of a non‐oxime reactivator for acetylcholinesterase inhibited by organophosphorus nerve agents. Chemico‐Biological Interactions, 259(Pt B), 133–141. https://doi.org/10.1016/j.cbi.2016.04.002.
Chambers, J. E., Dail, M. B., & Meek, E. C. (2020). Oxime‐mediated reactivation of organophosphate‐inhibited acetylcholinesterase with emphasis on centrally‐active oximes. Neuropharmacology, 175, 108201. https://doi.org/10.1016/j.neuropharm.2020.108201.
DeMar, J. C., Clarkson, E. D., Ratcliffe, R. H., Campbell, A. J., Thangavelu, S. G., Herdman, C. A., Leader, H., Schulz, S. M., Marek, E., Medynets, M. A., Ku, T. C., Evans, S. A., Khan, F. A., Owens, R. R., Nambiar, M. P., & Gordon, R. K. (2010). Pro‐2‐PAM therapy for central and peripheral cholinesterases. Chemico‐Biological Interactions, 187(1–3), 191–198. https://doi.org/10.1016/j.cbi.2010.02.015.
Eddleston, M., Buckley, N. A., Eyer, P., & Dawson, A. H. (2008). Management of acute organophosphorus pesticide poisoning. Lancet (London, England), 371(9612), 597–607. https://doi.org/10.1016/S0140‐6736(07)61202‐1.
Eddleston, M., & Chowdhury, F. R. (2016). Pharmacological treatment of organophosphorus insecticide poisoning: The old and the (possible) new. British Journal of Clinical Pharmacology, 81(3), 462–470. https://doi.org/10.1111/bcp.12784.
Eddleston, M., Eyer, P., Worek, F., Juszczak, E., Alder, N., Mohamed, F., Senarathna, L., Hittarage, A., Azher, S., Jeganathan, K., Jayamanne, S., von Meyer, L., Dawson, A. H., Sheriff, M. H., & Buckley, N. A. (2009). Pralidoxime in acute organophosphorus insecticide poisoning‐‐a randomised controlled trial. PLoS Medicine, 6(6), e1000104. https://doi.org/10.1371/journal.pmed.1000104.
Eyer, F., Meischner, V., Kiderlen, D., Thiermann, H., Worek, F., Haberkorn, M., Felgenhauer, N., Zilker, T., & Eyer, P. (2003). Human parathion poisoning. A toxicokinetic analysis. Toxicological Reviews, 22(3), 143–163. https://doi.org/10.2165/00139709‐200322030‐00003.
Eyer, F., Roberts, D. M., Buckley, N. A., Eddleston, M., Thiermann, H., Worek, F., & Eyer, P. (2009). Extreme variability in the formation of chlorpyrifos oxon (CPO) in patients poisoned by chlorpyrifos (CPF). Biochemical Pharmacology, 78(5), 531–537. https://doi.org/10.1016/j.bcp.2009.05.004.
Fest, C., & Schmidt, K. J. (1973). The chemistry of organophosphorus pesticides: Reactivity, synthesis, mode of action, toxicology. Science, 183, 506–507. https://www.science.org/doi/10.1126/science.183.4124.506.
Garcia, G. E., Campbell, A. J., Olson, J., Moorad‐Doctor, D., & Morthole, V. I. (2010). Novel oximes as blood‐brain barrier penetrating cholinesterase reactivators. Chemico‐Biological Interactions, 187(1–3), 199–206. https://doi.org/10.1016/j.cbi.2010.02.033.
Gunnell, D., Eddleston, M., Phillips, M. R., & Konradsen, F. (2007). The global distribution of fatal pesticide self‐poisoning: Systematic review. BMC Public Health, 7, 357. https://doi.org/10.1186/1471‐2458‐7‐357.
Gupta, R. C. (2006). Toxicology of Organophosphate & Carbamate Compounds. Academic Press.
Hulse, E. J., James, O. J., Davies, A., Simpson, J., Sciuto, A. M., & Eddleston, M. (2014). Respiratory complications of organophosphorus nerve agent and insecticide poisoning implications for respiratory and critical care. American Journal of Respiratory and Critical Care Medicine, 190(12), 1342–1354.
Knipe, D. W., Metcalfe, C., Fernando, R., Pearson, M., Konradsen, F., Eddleston, M., Gunnell, D. (2014). Suicide in Sri Lanka 1975‐2012: age, period and cohort analysis of police and hospital data. BMC Public Health, 14, 839. https://doi.org/10.1186/1471‐2458‐14‐839.
Luo, C., Chambers, C., Yang, Y., & Saxena, A. (2010). Mechanism for potent reactivation ability of H oximes analyzed by reactivation kinetic studies with cholinesterases from different species. Chemico‐Biological Interactions, 187(1–3), 185–190. https://doi.org/10.1016/j.cbi.2010.01.018.
McHardy, S. F., Bohmann, J. A., Corbett, M. R., Campos, B., Tidwell, M. W., Thompson, P. M., Bemben, C. J., Menchaca, T. A., Reeves, T. E., Cantrell, W. R., Jr., Bauta, W. E., Lopez, A., Maxwell, D. M., Brecht, K. M., Sweeney, R. E., & McDonough, J. (2014). Design, synthesis, and characterization of novel, nonquaternary reactivators of GF‐inhibited human acetylcholinesterase. Bioorganic & Medicinal Chemistry Letters, 24(7), 1711–1714. https://doi.org/10.1016/‐j.bmcl.2014.02.049.
Meek, E. C., Reiss, R., Crow, J. A., & Chambers, J. E. (2021). Inhibition kinetics of 16 organophosphorus pesticides or their active metabolites on erythrocyte acetylcholinesterase from humans and rats. Toxicological Sciences, 183(2), 404–414. https://doi.org/10.1093/toxsci/kfab031.
Mercey, G., Verdelet, T., Renou, J., Kliachyna, M., Baati, R., Nachon, F., Jean, L., & Renard, P. Y. (2012). Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Accounts of Chemical Research, 45(5), 756–766. https://doi.org/10.1021/ar2002864.
Mew, E. J., Padmanathan, P., Konradsen, F., Eddleston, M., Chang, S. S., Phillips, M. R., & Gunnell, D. (2017). The global burden of fatal self‐poisoning with pesticides 2006‐15: Systematic review. Journal of Affective Disorders, 219, 93–104. https://doi.org/10.1016/j.jad.2017.05.002.
Murray, M., & Butler, A. M. (1994). Hepatic biotransformation of parathion: Role of cytochrome P450 in NADPH‐ and NADH‐mediated microsomal oxidation in vitro. Chemical Research in Toxicology, 7(6), 792–799. https://doi.org/10.1021/tx00042a012.
Radić, Z., Sit, R. K., Kovarik, Z., Berend, S., Garcia, E., Zhang, L., Amitai, G., Green, C., Radić, B., Fokin, V. V., Sharpless, K. B., & Taylor, P. (2012). Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. The Journal of Biological Chemistry, 287(15), 11798–11809. https://doi.org/10.1074/jbc.M111.333732.
Rosenberg, Y. J., Mao, L., Jiang, X., Lees, J., Zhang, L., Radic, Z., & Taylor, P. (2017). Post‐exposure treatment with the oxime RS194B rapidly reverses early and advanced symptoms in macaques exposed to sarin vapor. Chemico‐Biological Interactions, 274, 50–57. https://doi.org/10.1016/j.cbi.2017.07.003.
Rosenberg, Y. J., Wang, J., Ooms, T., Rajendran, N., Mao, L., Jiang, X., Lees, J., Urban, L., Momper, J. D., Sepulveda, Y., Shyong, Y. J., & Taylor, P. (2018). Post‐exposure treatment with the oxime RS194B rapidly reactivates and reverses advanced symptoms of lethal inhaled paraoxon in macaques. Toxicology Letters, 293, 229–234. https://doi.org/10.1016/j.toxlet.2017.10.025.
Shih, T.‐M., Koplovitz, I., Kan, R. K., & McDonough, J. H. (2012). In search of an effective in vivo reactivator for organophosphorus nerve agent‐inhibited acetylcholinesterase in the central nervous system. Advanced Studies in Biology, 4, 451–478.
Shyong, Y.‐J., Sepulveda, Y., Garcia, A., Samskey, N. M., Radic, Z., Sit, R. K., Barry Sharpless, K. B., Momper, J. D., & Taylor, P. (2021). Exhancing target tissue levels and diminishing plasma clearance of ionizing antidotes in organophosphate exposures. The Journal of Pharmacology and Experimental Therapeutics, 378, 1–7. https://doi.org/10.1124/jpet.121.000715.
Sit, R. K., Kovarik, Z., Maček Hrvat, N., Žunec, S., Green, C., Fokin, V. V., Sharpless, K. B., Radić, Z., & Taylor, P. (2018). Pharmacology, pharmacokinetics, and tissue disposition of zwitterionic hydroxyiminoacetamido alkylamines as reactivating antidotes for organo‐phosphate exposure. Journal of Pharmacology and Experimental Therapeutics, 367(2), 363–372. https://doi.org/10.1124/jpet.118.249383.
Sit, R. K., Radić, Z., Gerardi, V., Zhang, L., Garcia, E., Katalinić, M., Amitai, G., Kovarik, Z., Fokin, V. V., Sharpless, K. B., & Taylor, P. (2011). New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases. The Journal of Biological Chemistry, 286(22), 19422–19430. https://doi.org/10.1074/jbc.M111.230656.
Tang, J., Cao, Y., Rose, R. L., Brimfield, A. A., Dai, D., Goldstein, J. A., & Hodgson, E. (2001). Metabolism of chlorpyrifos by human cytochrome P450 isoforms and human, mouse, and rat liver microsomes. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 29(9), 1201–1204.
Taylor, P. (2018). Anticholinesterase agents. In L. L. Brunton, R. Hilal‐Dandan, & B. C. Knollmann (Eds.), Goodman & Gilman's: The pharmacological basis of therapeutics (13th ed.). McGraw Hill.
Ubaid ur Rahman, H., Asghar, W., Nazir, W., Sandhu, M. A., Ahmed, A., & Khalid, N. (2021). A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. Science of the Total Environment, 755(Pt 2), 142649. https://doi.org/10.1016/j.scitotenv.2020.142649.
Worek, F., Aurbek, N., Herkert, N. M., John, H., Eddleston, M., Eyer, P., & Thiermann, H. (2010). Evaluation of medical countermeasures against organophosphorus compounds: The value of experimental data and computer simulations. Chemico‐Biological Interactions, 187(1–3), 259–264. https://doi.org/10.1016/j.cbi.2009.11.009.
Worek, F., Aurbek, N., Wille, T., Eyer, P., & Thiermann, H. (2011a). Kinetic analysis of interactions of paraoxon and oximes with human, rhesus monkey, swine, rabbit, rat and Guinea pig acetylcholinesterase. Toxicology Letters, 200(1–2), 19–23. https://doi.org/10.1016/j.toxlet.2010.10.009.
Worek, F., Aurbek, N., Wille, T., Eyer, P., & Thiermann, H. (2011b). Kinetic prerequisites of oximes as effective reactivators of organophosphate‐inhibited acetylcholinesterase: A theoretical approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 26(3), 303–308. https://doi.org/10.3109/14756366.2010.504673.
Worek, F., Thiermann, H., & Wille, T. (2020). Organophosphorus compounds and oximes: A critical review. Archives of Toxicology, 94(7), 2275–2292. https://doi.org/10.1007/s00204‐020‐02797‐0.
معلومات مُعتمدة: NS U01-058046 United States NS NINDS NIH HHS; R43NS108879 United States NS NINDS NIH HHS; NS U01-058046 United States NS NINDS NIH HHS; R43NS108879 United States NS NINDS NIH HHS
فهرسة مساهمة: Keywords: diethylphosphorothioate insecticides AChE reactivation; macaques; oxime antidote; post‐exposure; survival
المشرفين على المادة: 0 (Acetamides)
EC 3.1.1.7 (Acetylcholinesterase)
EC 3.1.1.8 (Butyrylcholinesterase)
JCS58I644W (Chlorpyrifos)
0 (Cholinesterase Inhibitors)
0 (Cholinesterase Reactivators)
0 (Insecticides)
0 (Nerve Agents)
0 (Organophosphorus Compounds)
0 (Oximes)
61G466064D (Parathion)
0 (RS194B)
تواريخ الأحداث: Date Created: 20230214 Date Completed: 20240415 Latest Revision: 20240419
رمز التحديث: 20240420
DOI: 10.1111/jnc.15777
PMID: 36786545
قاعدة البيانات: MEDLINE
الوصف
تدمد:1471-4159
DOI:10.1111/jnc.15777