دورية أكاديمية

Pore Aperture Control Toward Size-Exclusion-Based Hydrocarbon Separations.

التفاصيل البيبلوغرافية
العنوان: Pore Aperture Control Toward Size-Exclusion-Based Hydrocarbon Separations.
المؤلفون: Lal B; Department of Chemistry, Northwestern University, 60208, Evanston, IL, USA.; Institute of Chemistry, Shah Abdul Latif University, 66020, Khairpur, Sindh, Pakistan., Idrees KB; Department of Chemistry, Northwestern University, 60208, Evanston, IL, USA., Xie H; Department of Chemistry, Northwestern University, 60208, Evanston, IL, USA., Smoljan CS; Department of Chemical and Biological Engineering, Northwestern University, 60208, Evanston, IL, USA., Shafaie S; Integrated Molecular Structure and Education Center, Northwestern University, 60208, Evanston, IL, USA., Islamoglu T; Department of Chemistry, Northwestern University, 60208, Evanston, IL, USA., Farha OK; Department of Chemistry, Northwestern University, 60208, Evanston, IL, USA.; Department of Chemical and Biological Engineering, Northwestern University, 60208, Evanston, IL, USA.
المصدر: Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2023 Apr 11; Vol. 62 (16), pp. e202219053. Date of Electronic Publication: 2023 Mar 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 0370543 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3773 (Electronic) Linking ISSN: 14337851 NLM ISO Abbreviation: Angew Chem Int Ed Engl Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: <2004-> : Weinheim : Wiley-VCH
Original Publication: Weinheim/Bergstr. : New York, : Verlag Chemie ; Academic Press, c1962-
مستخلص: Metal-organic frameworks (MOFs) have been proposed as a promising material for non-thermal chemical separations owing to their high structural diversity and tunability. Here, we report the synthesis of a zinc-based MOF containing a three-dimensional (3D) linker, bicyclo[2.2.2]octane-1,4-dicarboxylic acid, with high thermal stability towards the separation of hexane isomers. The incorporation of the 3D linker enhances the structural stability and provides well-defined pore apertures/channels with sub-Ångstrom precision. This precision allowed for the separation of similarly sized hexane isomers based on subtle differences in their kinetic diameters. Multi-component liquid phase batch experiments confirmed the separation of hexanes mixture into linear, monobranched, and dibranched isomers. This work represents a significant milestone in the construction of stable Zn-based MOFs and the incorporation of 3D linkers as a potential solution to challenging separations.
(© 2023 Wiley-VCH GmbH.)
References: D. S. Sholl, R. P. Lively, Nature 2016, 532, 435-437.
B. Hua, L. O. Alimi, G. Zhang, Y. Ding, B. Moosa, W. S. Baslyman, N. M. Khashab, Mater. Today Chem. 2022, 24, 100840.
Z. Zhang, S. B. Peh, C. Kang, K. Chai, D. Zhao, EnergyChem 2021, 3, 100057.
W. Gong, Y. Xie, T. D. Pham, S. Shetty, F. A. Son, K. B. Idrees, Z. Chen, H. Xie, Y. Liu, R. Q. Snurr, B. Chen, B. Alameddine, Y. Cui, O. K. Farha, J. Am. Chem. Soc. 2022, 144, 3737-3745.
J. Zhou, T. Ke, Y. Song, H. Cai, Z. a. Wang, L. Chen, Q. Xu, Z. Zhang, Z. Bao, Q. Ren, Q. Yang, J. Am. Chem. Soc. 2022, 144, 21417-21424.
L. Yang, S. Qian, X. Wang, X. Cui, B. Chen, H. Xing, Chem. Soc. Rev. 2020, 49, 5359-5406.
Z. R. Herm, B. M. Wiers, J. A. Mason, J. M. van Baten, M. R. Hudson, P. Zajdel, C. M. Brown, N. Masciocchi, R. Krishna, J. R. Long, Science 2013, 340, 960-964.
P. F. Brântuas, A. Henrique, M. Wahiduzzaman, A. von Wedelstedt, T. Maity, A. E. Rodrigues, F. Nouar, U. H. Lee, K.-H. Cho, G. Maurin, J. A. C. Silva, C. Serre, Adv. Sci. 2022, 9, 2201494.
A. M. Robert, Handbook of Petroleum Refining Processes, Third Edition, 3rd ed., McGraw-Hill Education, New York, 2004.
L. Yu, S. Ullah, H. Wang, Q. Xia, T. Thonhauser, J. Li, Angew. Chem. Int. Ed. 2022, 61, e202211359;.
Angew. Chem. 2022, 134, e202211359.
H. Wang, X. Dong, J. Lin, S. J. Teat, S. Jensen, J. Cure, E. V. Alexandrov, Q. Xia, K. Tan, Q. Wang, D. H. Olson, D. M. Proserpio, Y. J. Chabal, T. Thonhauser, J. Sun, Y. Han, J. Li, Nat. Commun. 2018, 9, 1745.
E. Velasco, S. Xian, H. Wang, S. J. Teat, D. H. Olson, K. Tan, S. Ullah, T. M. Osborn Popp, A. D. Bernstein, K. A. Oyekan, A. J. Nieuwkoop, T. Thonhauser, J. Li, ACS Appl. Mater. Interfaces 2021, 13, 51997-52005.
H. Zhao, G. Maurin, A. Ghoufi, J. Phys. Chem. C 2022, 126, 2905-2911.
L. Yu, X. Dong, Q. Gong, S. R. Acharya, Y. Lin, H. Wang, Y. Han, T. Thonhauser, J. Li, J. Am. Chem. Soc. 2020, 142, 6925-6929.
H. Wang, J. Li, Acc. Chem. Res. 2019, 52, 1968-1978.
H. Wang, X. Dong, J. Ding, K. Wang, L. Yu, S. Zhang, Y. Han, Q. Gong, A. Ma, J. Li, Chem. Eur. J. 2021, 27, 11795-11798.
M. Bonneau, C. Lavenn, P. Ginet, K.-i. Otake, S. Kitagawa, Green Chem. 2020, 22, 718-724.
P. A. P. Mendes, P. Horcajada, S. Rives, H. Ren, A. E. Rodrigues, T. Devic, E. Magnier, P. Trens, H. Jobic, J. Ollivier, G. Maurin, C. Serre, J. A. C. Silva, Adv. Funct. Mater. 2014, 24, 7666-7673.
Z. Bao, G. Chang, H. Xing, R. Krishna, Q. Ren, B. Chen, Energy Environ. Sci. 2016, 9, 3612-3641.
K. B. Idrees, Z. Chen, X. Zhang, M. R. Mian, R. J. Drout, T. Islamoglu, O. K. Farha, Chem. Mater. 2020, 32, 3776-3782.
K. B. Idrees, Z. Li, H. Xie, K. O. Kirlikovali, M. Kazem-Rostami, X. Wang, X. Wang, T.-Y. Tai, T. Islamoglu, J. F. Stoddart, R. Q. Snurr, O. K. Farha, J. Am. Chem. Soc. 2022, 144, 12212-12218.
A. Boutin, F.-X. Coudert, M.-A. Springuel-Huet, A. V. Neimark, G. Férey, A. H. Fuchs, J. Phys. Chem. C 2010, 114, 22237-22244.
N. Chanut, A. Ghoufi, M.-V. Coulet, S. Bourrelly, B. Kuchta, G. Maurin, P. L. Llewellyn, Nat. Commun. 2020, 11, 1216.
F. Millange, R. I. Walton, Isr. J. Chem. 2018, 58, 1019-1035.
Deposition number 2228132 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
T. Islamoglu, K. B. Idrees, F. A. Son, Z. Chen, S.-J. Lee, P. Li, O. K. Farha, J. Mater. Chem. 2022, 10, 157-173.
A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, O. K. Farha, Nat. Rev. Mater. 2016, 1, 15018.
C. Healy, K. M. Patil, B. H. Wilson, L. Hermanspahn, N. C. Harvey-Reid, B. I. Howard, C. Kleinjan, J. Kolien, F. Payet, S. G. Telfer, P. E. Kruger, T. D. Bennett, Coord. Chem. Rev. 2020, 419, 213388.
S. Gai, J. Zhang, R. Fan, K. Xing, W. Chen, K. Zhu, X. Zheng, P. Wang, X. Fang, Y. Yang, ACS Appl. Mater. Interfaces 2020, 12, 8650-8662.
M. Moharramnejad, L. Tayebi, A. R. Akbarzadeh, A. Maleki, Microporous Mesoporous Mater. 2022, 336, 111815.
معلومات مُعتمدة: DE-FG02-08ER15967 Office of Science
فهرسة مساهمة: Keywords: Hexanes; Metal-Organic Frameworks; Separation; Zn-MOF
تواريخ الأحداث: Date Created: 20230215 Date Completed: 20230403 Latest Revision: 20230403
رمز التحديث: 20240628
DOI: 10.1002/anie.202219053
PMID: 36790793
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3773
DOI:10.1002/anie.202219053