دورية أكاديمية

T helper cell subsets: diversification of the field.

التفاصيل البيبلوغرافية
العنوان: T helper cell subsets: diversification of the field.
المؤلفون: Zielinski CE; Department of Infection Immunology, Leibniz Institute for Natural Products Research and Infection Biology, Jena, Germany.; Institute of Microbiology, Faculty of Biosciences, Friedrich Schiller University, Jena, Germany.
المصدر: European journal of immunology [Eur J Immunol] 2023 Dec; Vol. 53 (12), pp. e2250218. Date of Electronic Publication: 2023 Mar 03.
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 1273201 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4141 (Electronic) Linking ISSN: 00142980 NLM ISO Abbreviation: Eur J Immunol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Weinheim : Wiley-VCH
Original Publication: Weinheim, Verlag Chemie GmbH.
مواضيع طبية MeSH: T-Lymphocytes, Helper-Inducer* , Hypersensitivity*, Humans ; Cytokines ; Th17 Cells ; Autoimmunity ; T-Lymphocyte Subsets
مستخلص: Polarized T helper cell (Th cell) responses are important determinants of host protection. Th cell subsets tailor their functional repertoire of cytokines to their cognate antigens to efficiently contribute to their clearance. In contrast, in settings of immune abrogation, these polarized cytokine patterns of Th cells can mediate tissue damage and pathology resulting in allergy or autoimmunity. Recent technological developments in single-cell genomics and proteomics as well as advances in the high-dimensional bioinformatic analysis of complex datasets have challenged the prevailing Th cell subset classification into Th1, Th2, Th17, and other subsets. Additionally, systems immunology approaches have revealed that instructive input from the peripheral tissue microenvironment can have differential effects on the overall phenotype and molecular wiring of Th cells depending on their spatial distribution. Th cells from the blood or secondary lymphoid organs are therefore expected to follow distinct rules of regulation. In this review, the functional heterogeneity of Th cell subsets will be reviewed in the context of new technological developments and T-cell compartmentalization in tissue niches. This work will especially focus on challenges to the traditional boundaries of Th cell subsets and will discuss the underlying regulatory checkpoints, which could reveal new therapeutic strategies for various immune-mediated diseases.
(© 2023 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.)
References: Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. and Coffman, R. L., Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 1986. 136: 2348-2357.
Messi, M., Giacchetto, I., Nagata, K., Lanzavecchia, A., Natoli, G. and Sallusto, F., Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes. Nat. Immunol. 2003. 4: 78-86.
Hegazy, A. N., Peine, M., Helmstetter, C., Panse, I., Frohlich, A., Bergthaler, A., Flatz, L. et al., Interferons direct Th2 cell reprogramming to generate a stable GATA-3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions. Immunity 2010. 32: 116-128.
Eyerich, S. and Zielinski, C. E., Defining Th-cell subsets in a classical and tissue-specific manner: Examples from the skin. Eur. J. Immunol. 2014. 44: 3475-3483.
Harrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., Murphy, T. L., Murphy, K. M. and Weaver, C. T., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 2005. 6: 1123-1132.
Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. and Stockinger, B., TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006. 24: 179-189.
Noster, R., Riedel, R., Mashreghi, M. F., Radbruch, H., Harms, L., Haftmann, C., Chang, H. D. et al., IL-17 and GM-CSF expression are antagonistically regulated by human T helper cells. Sci. Transl. Med. 2014. 6: 241ra280.
Veldhoen, M., Uyttenhove, C., van Snick, J., Helmby, H., Westendorf, A., Buer, J., Martin, B. et al., Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 2008. 9: 1341-1346.
Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. and Spits, H., Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol. 2009. 10: 864-871.
Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. and Sallusto, F., Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 2009. 10: 857-863.
Tuzlak, S., Dejean, A. S., Iannacone, M., Quintana, F. J., Waisman, A., Ginhoux, F., Korn, T. et al., Repositioning TH cell polarization from single cytokines to complex help. Nat. Immunol. 2021. 22: 1210-1217.
Acosta-Rodriguez, E. V., Rivino, L., Geginat, J., Jarrossay, D., Gattorno, M., Lanzavecchia, A., Sallusto, F. et al., Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 2007. 8: 639-646.
Szabo, S. J., Kim, S. T., Costa, G. L., Zhang, X., Fathman, C. G. and Glimcher, L. H., A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000. 100: 655-669.
Wensky, A., Marcondes, M. C. and Lafaille, J. J., The role of IFN-gamma in the production of Th2 subpopulations: implications for variable Th2-mediated pathologies in autoimmunity. J. Immunol. 2001. 167: 3074-3081.
Connor, L. M., Tang, S. C., Cognard, E., Ochiai, S., Hilligan, K. L., Old, S. I., Pellefigues, C. et al., Th2 responses are primed by skin dendritic cells with distinct transcriptional profiles. J. Exp. Med. 2017. 214: 125-142.
Webb, L. M., Lundie, R. J., Borger, J. G., Brown, S. L., Connor, L. M., Cartwright, A. N., Dougall, A. M. et al., Type I interferon is required for T helper (Th) 2 induction by dendritic cells. EMBO J. 2017. 36: 2404-2418.
Mazzoni, A., Maggi, L., Siracusa, F., Ramazzotti, M., Rossi, M. C., Santarlasci, V., Montaini, G. et al., Eomes controls the development of Th17-derived (non-classic) Th1 cells during chronic inflammation. Eur. J. Immunol. 2019. 49: 79-95.
Yang, R., Mele, F., Worley, L., Langlais, D., Rosain, J., Benhsaien, I., Elarabi, H. et al., Human T-bet governs innate and innate-like adaptive IFN-gamma immunity against mycobacteria. Cell 2020. 183: 1826-1847.e1831.
Yang, R., Weisshaar, M., Mele, F., Benhsaien, I., Dorgham, K., Han, J., Croft, C. A. et al., High Th2 cytokine levels and upper airway inflammation in human inherited T-bet deficiency. J. Exp. Med. 2021. 218: e20202726.
Bustamante, J., Mendelian susceptibility to mycobacterial disease: recent discoveries. Hum. Genet. 2020. 139: 993-1000.
Ramesh, R., Kozhaya, L., McKevitt, K., Djuretic, I. M., Carlson, T. J., Quintero, M. A., McCauley, J. L. et al., Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J. Exp. Med. 2014. 211: 89-104.
Zielinski, C. E., Corti, D., Mele, F., Pinto, D., Lanzavecchia, A. and Sallusto, F., Dissecting the human immunologic memory for pathogens. Immunol. Rev. 2011. 240: 40-51.
Ogishi, M., Yang, R., Rodriguez, R., Golec, D. P., Martin, E., Philippot, Q., Bohlen, J. et al., Inherited human ITK deficiency impairs IFN-gamma immunity and underlies tuberculosis. J. Exp. Med. 2023. 220: e20220484.
Marichal, T., Starkl, P., Reber, L. L., Kalesnikoff, J., Oettgen, H. C., Tsai, M., Metz, M. et al., A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity 2013. 39: 963-975.
Chae, W. J., Ehrlich, A. K., Chan, P. Y., Teixeira, A. M., Henegariu, O., Hao, L., Shin, J. H. et al., The Wnt antagonist dickkopf-1 promotes pathological type 2 cell-mediated inflammation. Immunity 2016. 44: 246-258.
Gieseck, R. L., 3rd, Wilson, M. S. and Wynn, T. A., Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 2018. 18: 62-76.
Zaiss, D. M., Yang, L., Shah, P. R., Kobie, J. J., Urban, J. F. and Mosmann, T. R., Amphiregulin, a TH2 cytokine enhancing resistance to nematodes. Science 2006. 314: 1746.
Guo, L., Huang, Y., Chen, X., Hu-Li, J., Urban, J. F., Jr. and Paul, W. E., Innate immunological function of TH2 cells in vivo. Nat. Immunol. 2015. 16: 1051-1059.
Minutti, C. M., Drube, S., Blair, N., Schwartz, C., McCrae, J. C., McKenzie, A. N., Kamradt, T. et al., Epidermal growth factor receptor expression licenses type-2 helper T cells to function in a T cell receptor-independent fashion. Immunity 2017. 47: 710-722.e716.
Matthias, J. and Zielinski, C. E., Shaping the diversity of Th2 cell responses in epithelial tissues and its potential for allergy treatment. Eur. J. Immunol. 2019. 49: 1321-1333.
Upadhyaya, B., Yin, Y., Hill, B. J., Douek, D. C. and Prussin, C., Hierarchical IL-5 expression defines a subpopulation of highly differentiated human Th2 cells. J. Immunol. 2011. 187: 3111-3120.
Endo, Y., Iwamura, C., Kuwahara, M., Suzuki, A., Sugaya, K., Tumes, D. J., Tokoyoda, K. et al., Eomesodermin controls interleukin-5 production in memory T helper 2 cells through inhibition of activity of the transcription factor GATA3. Immunity 2011. 35: 733-745.
Obata-Ninomiya, K., Ishiwata, K., Nakano, H., Endo, Y., Ichikawa, T., Onodera, A., Hirahara, K. et al., CXCR6(+)ST2(+) memory T helper 2 cells induced the expression of major basic protein in eosinophils to reduce the fecundity of helminth. Proc. Natl. Acad. Sci. U. S. A. 2018. 115: E9849-E9858.
Wambre, E., Bajzik, V., DeLong, J. H., O'Brien, K., Nguyen, Q. A., Speake, C., Gersuk, V. H. et al., A phenotypically and functionally distinct human T(H)2 cell subpopulation is associated with allergic disorders. Sci. Transl. Med. 2017. 9: eaam9171.
Vandamme, C., Rytkonen-Nissinen, M., Lonnberg, T., Randell, J., Harvima, R. J., Kinnunen, T. and Virtanen, T., Single-cell characterization of dog allergen-specific T cells reveals T(H)2 heterogeneity in allergic individuals. J. Allergy Clin. Immunol. 2022. 149: 1732-1743.e1715.
Badolati, I., van der Heiden, M., Brodin, D., Zuurveld, M., Szilagyi, S., Bjorkander, S. and Sverremark-Ekstrom, E., Staphylococcus aureus-derived factors promote human Th9 cell polarization and enhance a transcriptional program associated with allergic inflammation. Eur. J. Immunol. 2022: e2250083.
Miao, B. P., Zhang, R. S., Sun, H. J., Yu, Y. P., Chen, T., Li, L. J., Liu, J. Q. et al., Inhibition of squamous cancer growth in a mouse model by Staphylococcal enterotoxin B-triggered Th9 cell expansion. Cell. Mol. Immunol. 2017. 14: 371-379.
Jabeen, R., Goswami, R., Awe, O., Kulkarni, A., Nguyen, E. T., Attenasio, A., Walsh, D. et al., Th9 cell development requires a BATF-regulated transcriptional network. J. Clin. Invest. 2013. 123: 4641-4653.
Gerlach, K., Hwang, Y., Nikolaev, A., Atreya, R., Dornhoff, H., Steiner, S., Lehr, H. A. et al., TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 2014. 15: 676-686.
Staudt, V., Bothur, E., Klein, M., Lingnau, K., Reuter, S., Grebe, N., Gerlitzki, B. et al., Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 2010. 33: 192-202.
Micosse, C., von Meyenn, L., Steck, O., Kipfer, E., Adam, C., Simillion, C., Seyed Jafari, S. M. et al., Human “TH9” cells are a subpopulation of PPAR-gamma(+) TH2 cells. Sci. Immunol. 2019. 4: eaat5943.
Ivanov, II, McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J. et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006. 126: 1121-1133.
Zhong, X., Wu, H., Zhang, W., Gwack, Y., Shang, W., Lee, K. O., Isakov, N. et al., Decoupling the role of RORgammat in the differentiation and effector function of TH17 cells. Sci. Adv. 2022. 8: eadc9221.
Sallusto, F., Zielinski, C. E. and Lanzavecchia, A., Human Th17 subsets. Eur. J. Immunol. 2012. 42: 2215-2220.
Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. and Sallusto, F., Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 2007. 8: 942-949.
Cosmi, L., De Palma, R., Santarlasci, V., Maggi, L., Capone, M., Frosali, F., Rodolico, G. et al., Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J. Exp. Med. 2008. 205: 1903-1916.
Zielinski, C. E., Mele, F., Aschenbrenner, D., Jarrossay, D., Ronchi, F., Gattorno, M., Monticelli, S. et al., Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 2012. 484: 514-518.
Sallusto, F., Heterogeneity of human CD4(+) T cells against microbes. Annu. Rev. Immunol. 2016. 34: 317-334.
Noster, R., de Koning, H. D., Maier, E., Prelog, M., Lainka, E. and Zielinski, C. E., Dysregulation of proinflammatory versus anti-inflammatory human TH17 cell functionalities in the autoinflammatory Schnitzler syndrome. J. Allergy Clin. Immunol. 2016. 138: 1161-1169.e1166.
Chong, W. P., Mattapallil, M. J., Raychaudhuri, K., Bing, S. J., Wu, S., Zhong, Y., Wang, W. et al., The cytokine IL-17A limits Th17 pathogenicity via a negative feedback loop driven by autocrine induction of IL-24. Immunity 2020. 53: 384-397.e385.
Puel, A., Human inborn errors of immunity underlying superficial or invasive candidiasis. Hum. Genet. 2020. 139: 1011-1022.
Saunte, D. M., Mrowietz, U., Puig, L. and Zachariae, C., Candida infections in patients with psoriasis and psoriatic arthritis treated with interleukin-17 inhibitors and their practical management. Br. J. Dermatol. 2017. 177: 47-62.
Roncarolo, M. G., Gregori, S., Bacchetta, R., Battaglia, M. and Gagliani, N., The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity 2018. 49: 1004-1019.
Gagliani, N., Magnani, C. F., Huber, S., Gianolini, M. E., Pala, M., Licona-Limon, P., Guo, B. et al., Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 2013. 19: 739-746.
Edwards, C. L., Ng, S. S., de Labastida Rivera, F., Corvino, D., Engel, J. A., Montes de Oca, M., Bukali, L. et al., IL-10-producing Th1 cells possess a distinct molecular signature in malaria. J. Clin. Invest. 2023. 133: e153733.
Sumida, T. S., Dulberg, S., Schupp, J. C., Lincoln, M. R., Stillwell, H. A., Axisa, P.-P., Comi, M. et al., Type I interferon transcriptional network regulates expression of coinhibitory receptors in human T cells. Nat. Immunol. 2022. 23: 632-642.
Rasouli, J., Casella, G., Yoshimura, S., Zhang, W., Xiao, D., Garifallou, J., Gonzalez, M. V. et al., A distinct GM-CSF(+) T helper cell subset requires T-bet to adopt a T(H)1 phenotype and promote neuroinflammation. Sci. Immunol. 2020. 5: eaba9953.
Cano-Gamez, E., Soskic, B., Roumeliotis, T. I., So, E., Smyth, D. J., Baldrighi, M., Wille, D. et al., Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4(+) T cells to cytokines. Nat. Commun. 2020. 11: 1801.
Mahata, B., Zhang, X., Kolodziejczyk, A. A., Proserpio, V., Haim-Vilmovsky, L., Taylor, A. E., Hebenstreit, D. et al., Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014. 7: 1130-1142.
Tibbitt, C. A., Stark, J. M., Martens, L., Ma, J., Mold, J. E., Deswarte, K., Oliynyk, G. et al., Single-cell RNA sequencing of the T helper cell response to house dust mites defines a distinct gene expression signature in airway Th2 cells. Immunity 2019. 51: 169-184.e165.
Henriksson, J., Chen, X., Gomes, T., Ullah, U., Meyer, K. B., Miragaia, R., Duddy, G. et al., Genome-wide CRISPR screens in T helper cells reveal pervasive crosstalk between activation and differentiation. Cell 2019. 176: 882-896.e818.
Gaublomme, J. T., Yosef, N., Lee, Y., Gertner, R. S., Yang, L. V., Wu, C., Pandolfi, P. P. et al., Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 2015. 163: 1400-1412.
Wang, C., Yosef, N., Gaublomme, J., Wu, C., Lee, Y., Clish, C. B., Kaminski, J. et al., CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 2015. 163: 1413-1427.
Korn, T., Bettelli, E., Gao, W., Awasthi, A., Jager, A., Strom, T. B., Oukka, M. et al., IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007. 448: 484-487.
Meyer Zu Horste, G., Przybylski, D., Schramm, M. A., Wang, C., Schnell, A., Lee, Y., Sobel, R. et al., Fas promotes T helper 17 cell differentiation and inhibits T helper 1 cell development by binding and sequestering transcription factor STAT1. Immunity 2018. 48: 556-569.e557.
Kishi, Y., Kondo, T., Xiao, S., Yosef, N., Gaublomme, J., Wu, C., Wang, C. et al., Protein C receptor (PROCR) is a negative regulator of Th17 pathogenicity. J. Exp. Med. 2016. 213: 2489-2501.
Divangahi, M., Aaby, P., Khader, S. A., Barreiro, L. B., Bekkering, S., Chavakis, T., van Crevel, R. et al., Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nat. Immunol. 2021. 22: 2-6.
Arbore, G., West, E. E., Spolski, R., Robertson, A. A. B., Klos, A., Rheinheimer, C., Dutow, P. et al., T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science 2016. 352: aad1210.
Chao, Y. Y., Puhach, A., Frieser, D., Arunkumar, M., Lehner, L., Seeholzer, T., Garcia-Lopez, A. et al., Human T(H)17 cells engage gasdermin E pores to release IL-1alpha on NLRP3 inflammasome activation. Nat. Immunol. 2023. 24: 295-308.
Frisch, S. M., Interleukin-1alpha: novel functions in cell senescence and antiviral response. Cytokine 2022. 154: 155875.
Martin, B. N., Wang, C., Zhang, C. J., Kang, Z., Gulen, M. F., Zepp, J. A., Zhao, J. et al., T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat. Immunol. 2016. 17: 583-592.
Bruchard, M., Rebé, C., Derangère, V., Togbé, D., Ryffel, B., Boidot, R., Humblin, E. et al., The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat. Immunol. 2015. 16: 859-870.
de Almeida, G. P., Lichtner, P., Eckstein, G., Brinkschmidt, T., Chu, C. F., Sun, S., Reinhard, J. et al., Human skin-resident host T cells can persist long term after allogeneic stem cell transplantation and maintain recirculation potential. Sci. Immunol. 2022. 7: eabe2634.
Snyder, M. E., Finlayson, M. O., Connors, T. J., Dogra, P., Senda, T., Bush, E., Carpenter, D. et al., Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 2019. 4: eaav5581.
Bartolome-Casado, R., Landsverk, O. J. B., Chauhan, S. K., Richter, L., Phung, D., Greiff, V., Risnes, L. F. et al., Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med. 2019. 216: 2412-2426.
Zielinski, C. E., Human T cell immune surveillance: phenotypic, functional and migratory heterogeneity for tailored immune responses. Immunol. Lett. 2017. 190: 125-129.
Beura, L. K., Wijeyesinghe, S., Thompson, E. A., Macchietto, M. G., Rosato, P. C., Pierson, M. J., Schenkel, J. M. et al., T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 2018. 48: 327-338.e325.
Amezcua Vesely, M. C., Pallis, P., Bielecki, P., Low, J. S., Zhao, J., Harman, C. C. D., Kroehling, L. et al., Effector T(H)17 cells give rise to long-lived T(RM) cells that are essential for an immediate response against bacterial infection. Cell 2019. 178: 1176-1188.e1115.
Krebs, C. F., Reimers, D., Zhao, Y., Paust, H. J., Bartsch, P., Nunez, S., Rosemblatt, M. V. et al., Pathogen-induced tissue-resident memory T(H)17 (T(RM)17) cells amplify autoimmune kidney disease. Sci. Immunol. 2020. 5 eaba4163.
Hondowicz, B. D., An, D., Schenkel, J. M., Kim, K. S., Steach, H. R., Krishnamurty, A. T., Keitany, G. J. et al., Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity 2016. 44: 155-166.
Radtke, D., Thuma, N., Schulein, C., Kirchner, P., Ekici, A. B., Schober, K. and Voehringer, D., Th2 single-cell heterogeneity and clonal distribution at distant sites in helminth-infected mice. Elife 2022. 11: e74183.
Zielinski, C. E., Regulation of T cell responses by ionic salt signals. Cells 2021. 10: 2365.
Fischereder, M., Michalke, B., Schmöckel, E., Habicht, A., Kunisch, R., Pavelic, I., Szabados, B. et al., Sodium storage in human tissues is mediated by glycosaminoglycan expression. Am. J. Physiol. Renal. Physiol. 2017. 313: F319-F325.
Wu, C., Yosef, N., Thalhamer, T., Zhu, C., Xiao, S., Kishi, Y., Regev, A. et al., Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013. 496: 513-517.
Kleinewietfeld, M., Manzel, A., Titze, J., Kvakan, H., Yosef, N., Linker, R. A., Muller, D. N. et al., Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013. 496: 518-522.
Matthias, J., Heink, S., Picard, F., Zeitrag, J., Kolz, A., Chao, Y. Y., Soll, D. et al., Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. J. Clin. Invest. 2020. 130: 4587-4600.
Matthias, J., Maul, J., Noster, R., Meinl, H., Chao, Y. Y., Gerstenberg, H., Jeschke, F. et al., Sodium chloride is an ionic checkpoint for human TH2 cells and shapes the atopic skin microenvironment. Sci. Transl. Med. 2019. 11: eaau0683.
Wang, X., Ni, L., Wan, S., Zhao, X., Ding, X., Dejean, A. and Dong, C., Febrile temperature critically controls the differentiation and pathogenicity of T helper 17 cells. Immunity 2020. 52: 328-341.e325.
Zhang, X., Kim, T. H., Thauland, T. J., Li, H., Majedi, F. S., Ly, C., Gu, Z. et al., Unraveling the mechanobiology of immune cells. Curr. Opin. Biotechnol. 2020. 66: 236-245.
Cua, D. J., Sherlock, J., Chen, Y., Murphy, C. A., Joyce, B., Seymour, B., Lucian, L. et al., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003. 421: 744-748.
Stritesky, G. L., Yeh, N. and Kaplan, M. H., IL-23 promotes maintenance but not commitment to the Th17 lineage. J. Immunol. 2008. 181: 5948-5955.
Peng, L. L., Wang, Y., Zhu, F. L., Xu, W. D., Ji, X. L. and Ni, J., IL-23R mutation is associated with ulcerative colitis: A systemic review and meta-analysis. Oncotarget 2017. 8: 4849-4863.
Duerr, R. H., Taylor, K. D., Brant, S. R., Rioux, J. D., Silverberg, M. S., Daly, M. J., Steinhart, A. H. et al., A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006. 314: 1461-1463.
Bojko, A., Ostasz, R., Bialecka, M., Klimowicz, A., Malinowski, D., Budawski, R., Bojko, P. et al., IL12B, IL23A, IL23R and HLA-C*06 genetic variants in psoriasis susceptibility and response to treatment. Hum. Immunol. 2018. 79: 213-217.
Kobayashi, T., Okamoto, S., Hisamatsu, T., Kamada, N., Chinen, H., Saito, R., Kitazume, M. T. et al., IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut 2008. 57: 1682-1689.
Teng, M. W., Bowman, E. P., McElwee, J. J., Smyth, M. J., Casanova, J. L., Cooper, A. M. and Cua, D. J., IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 2015. 21: 719-729.
Salvati, L., Liotta, F., Annunziato, F. and Cosmi, L., Therapeutical targets in allergic inflammation. Biomedicines 2022. 10: 2874.
Pelaia, C., Heffler, E., Crimi, C., Maglio, A., Vatrella, A., Pelaia, G. and Canonica, G. W., Interleukins 4 and 13 in asthma: key pathophysiologic cytokines and druggable molecular targets. Front. Pharmacol. 2022. 13: 851940.
Doran, E., Cai, F., Holweg, C. T. J., Wong, K., Brumm, J. and Arron, J. R., Interleukin-13 in asthma and other eosinophilic disorders. Front. Med. 2017. 4: 139.
Ortega, H. G., Liu, M. C., Pavord, I. D., Brusselle, G. G., FitzGerald, J. M., Chetta, A., Humbert, M. et al., Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 2014. 371: 1198-1207.
Donlan, A. N., Mallawaarachi, I., Sasson, J. M., Preissner, R., Loomba, J. J. and Petri, W. A., Dupilumab use is associated with protection from COVID-19 mortality: a retrospective analysis. Clin. Infect. Dis. 2023. 76: 148-151.
Hammad, H., Debeuf, N., Aegerter, H., Brown, A. S. and Lambrecht, B. N., Emerging paradigms in type 2 immunity. Annu. Rev. Immunol. 2022. 40: 443-467.
Napolitano, M., Patruno, C., Ruggiero, A., Nocerino, M. and Fabbrocini, G., Safety of dupilumab in atopic patients during COVID-19 outbreak. J. Dermatolog. Treat. 2022. 33: 600-601.
Cavalli, G., Colafrancesco, S., Emmi, G., Imazio, M., Lopalco, G., Maggio, M. C., Sota, J. et al., Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun. Rev. 2021. 20: 102763.
معلومات مُعتمدة: 210592381 Deutsche Forschungsgemeinschaft (DFG, German research foundation); 210879364 Deutsche Forschungsgemeinschaft (DFG, German research foundation); LPI-BT1 Leibniz Center for Photonics in Infection Research; LPI-BT6 Leibniz Center for Photonics in Infection Research; Carl-Zeiss-Stiftung
فهرسة مساهمة: Keywords: T helper cells; cytokines; scRNAseq; single-cell genomics; single-cell mass cytometry
المشرفين على المادة: 0 (Cytokines)
تواريخ الأحداث: Date Created: 20230215 Date Completed: 20231220 Latest Revision: 20231220
رمز التحديث: 20231220
DOI: 10.1002/eji.202250218
PMID: 36792132
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4141
DOI:10.1002/eji.202250218