دورية أكاديمية

Light-emitting Diode Can Enhance the Metabolism and Paracrine Action of Mesenchymal Stem Cells.

التفاصيل البيبلوغرافية
العنوان: Light-emitting Diode Can Enhance the Metabolism and Paracrine Action of Mesenchymal Stem Cells.
المؤلفون: Mansano BSDM; Biophotonics Applied to Health Science, Nove de Julho University, Sao Paulo, SP, Brazil., da Rocha VP; Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil., Teixeira ILA; Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil., de Oliveira HA; Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil., Vieira SS; Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil.; Base Hospital Foundation, Medicine School of São José do Rio Preto, Sao Paulo, SP, Brazil., Antonio EL; Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil., Tucci PJF; Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil., Serra AJ; Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil.
المصدر: Photochemistry and photobiology [Photochem Photobiol] 2023 Nov-Dec; Vol. 99 (6), pp. 1420-1428. Date of Electronic Publication: 2023 Mar 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Society for Photobiology Country of Publication: United States NLM ID: 0376425 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1751-1097 (Electronic) Linking ISSN: 00318655 NLM ISO Abbreviation: Photochem Photobiol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2004->: Lawrence KS : American Society for Photobiology
Original Publication: Augusta, GA: American Society for Photobiology, <1996->
مواضيع طبية MeSH: Insulin-Like Growth Factor I* , Mesenchymal Stem Cells*, Interleukin-6 ; Oxidative Stress ; Adenosine Triphosphate
مستخلص: This study investigated the influence of red light-emitting diodes (LED, 630 nm) on different irradiation parameters and the number of applications on mesenchymal stem cells derived from adipose tissue (AdMSCs) metabolism and paracrine factors. The AdMSCs were irradiated with a LEDbox device (output power: 2452.5 mW; laser beam: 163.5 cm 2 ; irradiance: 15 mW cm -2 ) using radiant exposures of 0.5, 2, and 4 J cm -2 , respectively. AdMSCs were irradiated once or every 48 h up to three irradiations. All molecular analyses were performed 24 h after the last irradiation. LED did not induce changes in cell count, DNA damage, and oxidative stress. A significant repercussion of the LED has been noticed after three irradiations with 4 J cm -2 . AdMSCs had higher levels of IL-6, IGF-1, and NOx index. A higher ATP content and MMT/Resazurin assay were identified in AdMSCs irradiated three times with 4 J cm -2 . Mitochondrial basal respiration, maximal respiration and proton leak under metabolic stress were reduced by 0.5 and 2 J cm -2 irradiations. These data showed that three LED irradiations with 4 J cm -2 may be a suitable parameter for future AdMSCs therapy because of its improved metabolic activity, ATP content, and IL-6, IGF-1, and nitric oxide secretion.
(© 2023 American Society for Photobiology.)
References: Karpov, A. A., D. V. Udalova, M. G. Pliss and M. M. Galagudza (2017) Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and Armour to cells. Cell Prolif. 50, e12316.
Gautam, M., D. Fujita, K. Kimura, H. Ichikawa, A. Izawa, M. Hirose, T. Kashihara, M. Yamada, M. Takahashi, U. Ikeda and Y. Shiba (2015) Transplantation of adipose tissue-derived stem cells improves cardiac contractile function and electrical stability in a rat myocardial infarction model. J. Mol. Cell. Cardiol. 81, 139-149.
de Souza Vieira, S., E. L. Antonio, B. L. de Melo, L. A. Portes, J. Montemor, H. A. Oliveira, F. L. Martins, C. Zogbi, A. C. Girardi, J. A. Silva Jr., P. T. Camillo de Carvalho, P. J. F. Tucci and A. J. Serra (2019) Exercise training potentiates the cardioprotective effects of stem cells post-infarction. Heart Lung Circ. 28, 263-271.
Souza Vieira, S., E. L. Antonio, B. L. de Melo, L. F. Neves Dos Santos, E. T. Santana, R. Feliciano, F. L. N. Marques, D. de Paula Faria, C. A. Buchpiguel, J. A. Silva Jr., P. J. F. Tucci and A. J. Serra (2020) Increased myocardial retention of mesenchymal stem cells post-MI by pre-conditioning exercise training. Stem Cell Rev Rep. 16, 730-741.
dos Santos, L., A. A. Santos, G. A. Goncalves, J. E. Krieger and P. J. Tucci (2010) Bone marrow cell therapy prevents infarct expansion and improves border zone remodeling after coronary occlusion in rats. Int. J. Cardiol. 145, 34-39.
dos Santos, L., G. A. Goncalves, A. P. Davel, A. A. Santos, J. E. Krieger, L. V. Rossoni and P. J. Tucci (2013) Cell therapy prevents structural, functional and molecular remodeling of remote non-infarcted myocardium. Int. J. Cardiol. 168, 3829-3836.
Ma, T., J. Sun, Z. Zhao, W. Lei, Y. Chen, X. Wang, J. Yang and Z. Shen (2017) A brief review: Adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res. Ther. 8, 124.
Christoforou, N. and J. D. Gearhart (2007) Stem cells and their potential in cell-based cardiac therapies. Prog. Cardiovasc. Dis. 49, 396-413.
Cheng, A. S. and T. M. Yau (2008) Paracrine effects of cell transplantation: Strategies to augment the efficacy of cell therapies. Semin. Thorac. Cardiovasc. Surg. 20, 94-101.
Maacha, S., H. Sidahmed, S. Jacob, G. Gentilcore, R. Calzone, J. C. Grivel and C. Cugno (2020) Paracrine mechanisms of mesenchymal stromal cells in angiogenesis. Stem Cells Int. 2020, 4356359.
Nakagami, H., R. Morishita, K. Maeda, Y. Kikuchi, T. Ogihara and Y. Kaneda (2006) Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J. Atheroscler. Thromb. 13, 77-81.
Zhang, M., N. Mal, M. Kiedrowski, M. Chacko, A. T. Askari, Z. B. Popovic, O. N. Koc and M. S. Penn (2007) SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 21, 3197-3207.
Zhang, Y., X. Liang, Q. Lian and H. F. Tse (2013) Perspective and challenges of mesenchymal stem cells for cardiovascular regeneration. Expert Rev. Cardiovasc. Ther. 11, 505-517.
Richardson, J. D., A. J. Nelson, A. C. Zannettino, S. Gronthos, S. G. Worthley and P. J. Psaltis (2013) Optimization of the cardiovascular therapeutic properties of mesenchymal stromal/stem cells-taking the next step. Stem Cell Rev. Rep. 9, 281-302.
Heiskanen, V. and M. R. Hamblin (2018) Photobiomodulation: Lasers vs. light emitting diodes? Photochem. Photobiol. Sci. 17, 1003-1017.
Yin, K., R. Zhu, S. Wang and R. C. Zhao (2017) Low-level laser effect on proliferation, migration, and Antiapoptosis of mesenchymal stem cells. Stem Cells Dev. 26, 762-775.
AlGhamdi, K. M., A. Kumar and N. A. Moussa (2012) Low-level laser therapy: A useful technique for enhancing the proliferation of various cultured cells. Lasers Med. Sci. 27, 237-249.
Ong, W. K., H. F. Chen, C. T. Tsai, Y. J. Fu, Y. S. Wong, D. J. Yen, T. H. Chang, H. D. Huang, O. K. Lee, S. Chien and J. H. Ho (2013) The activation of directional stem cell motility by green light-emitting diode irradiation. Biomaterials 34, 1911-1920.
Peat, F. J., A. C. Colbath, L. M. Bentsen, L. R. Goodrich and M. R. King (2018) In vitro effects of high-intensity laser Photobiomodulation on equine bone marrow-derived mesenchymal stem cell viability and cytokine expression. Photomed. Laser Surg. 36, 83-91.
Mostafavinia, A., L. Dehdehi, S. K. Ghoreishi, B. Hajihossainlou and M. Bayat (2017) Effect of in vivo low-level laser therapy on bone marrow-derived mesenchymal stem cells in ovariectomy-induced osteoporosis of rats. J. Photochem. Photobiol. B 175, 29-36.
de Oliveira, T. S., A. J. Serra, M. T. Manchini, V. Bassaneze, J. E. Krieger, P. de Tarso Camillo, D. E. de Carvalho, D. S. Antunes, P. J. Bocalini, F. Tucci and J. A. Silva Jr. (2015) Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers Med. Sci. 30, 217-223.
Mansano, B., V. P. da Rocha, E. L. Antonio, D. F. Peron, R. do Nascimento de Lima, P. J. F. Tucci and A. J. Serra (2021) Enhancing the therapeutic potential of mesenchymal stem cells with light-emitting diode: Implications and molecular mechanisms. Oxid. Med. Cell. Longev. 2021, 6663539.
Yang, D., W. Yi, E. Wang and M. Wang (2016) Effects of light-emitting diode irradiation on the osteogenesis of human umbilical cord mesenchymal stem cells in vitro. Sci. Rep. 6, 37370.
Ahmed, U., R. Ahmed, M. S. Masoud, M. Tariq, U. A. Ashfaq, R. Augustine and A. Hasan (2021) Stem cells basedin vitromodels: Trends and prospects in biomaterials cytotoxicity studies. Biomed. Mater. DOI:10.1088/1748-605X/abe6d8.
Firoozi, P., M. A. Amiri, N. Soghli, N. Farshidfar, N. Hakimiha and R. Fekrazad (2022) The role of photobiomodulation on dental-derived mesenchymal stem cells in regenerative dentistry: A comprehensive systematic review. Curr. Stem Cell Res. Ther. DOI:10.2174/1574888X17666220810141411.
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) The National Academies collection: Reports funded by National Institutes of Health. In Guide for the Care and Use of Laboratory Animals. pp. 1-220, National Academies Press, Washington.
de Lima, R. D. N., S. S. Vieira, E. L. Antonio, P. T. Camillo de Carvalho, R. de Paula Vieira, B. Mansano, D. Ferreira de Arruda Junior, A. C. C. Girardi, P. J. F. Tucci and A. J. Serra (2019) Low-level laser therapy alleviates the deleterious effect of doxorubicin on rat adipose tissue-derived mesenchymal stem cells. J. Photochem. Photobiol. B 196, 111512.
Dinardo, C. L., G. Venturini, S. V. Omae, E. H. Zhou, J. M. da Motta-Leal-Filho, R. Dariolli, J. E. Krieger, A. M. Alencar and A. Costa Pereira (2012) Vascular smooth muscle cells exhibit a progressive loss of rigidity with serial culture passaging. Biorheology 49, 365-373.
Peron, D., R. A. Prates, E. L. Antonio, I. L. A. Teixeira, H. A. de Oliveira, B. Mansano, A. Bergamo, D. R. Almeida, R. Dariolli, P. J. F. Tucci and A. J. Serra (2022) A common oral pathogen Porphyromonas gingivalis induces myocarditis in rats. J. Clin. Periodontol. 49, 506-517.
Sunemi, S. M., I. L. A. Teixeira, B. Mansano, H. A. de Oliveira, E. L. Antonio, C. de Souza Oliveira, E. C. P. Leal-Junior, P. J. F. Tucci and A. J. Serra (2021) Post-resistance exercise photobiomodulation therapy has a more effective antioxidant effect than pre-application on muscle oxidative stress. Photochem. Photobiol. Sci. 20, 585-595.
Kumar, P., A. Nagarajan and P. D. Uchil (2018) Analysis of cell viability by the alamarBlue assay. Cold Spring Harb. Protoc. 2018, 462-464.
Stockert, J. C., R. W. Horobin, L. L. Colombo and A. Blazquez-Castro (2018) Tetrazolium salts and formazan products in cell biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 120, 159-167.
Parietti, E., J. R. Pallandre, F. Deschaseaux, B. Aupecle, C. Durst, J. P. Kantelip, S. Chocron and S. Davani (2011) Presence of circulating endothelial progenitor cells and levels of stromal-derived factor-1alpha are associated with ascending aorta aneurysm size. Eur. J. Cardiothorac. Surg. 40, e6-e12.
Vale, K. L. D., D. A. Maria, L. C. Picoli, A. M. Deana, M. B. Mascaro, R. A. M. Ferrari, S. K. Bussadori and K. P. S. Fernandes (2017) The effects of Photobiomodulation delivered by light-emitting diode on stem cells from human exfoliated deciduous teeth: A study on the relevance to pluripotent stem cell viability and proliferation. Photomed. Laser Surg. 35, 659-665.
Hou, J. F., H. Zhang, X. Yuan, J. Li, Y. J. Wei and S. S. Hu (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: Proliferation, growth factors secretion and myogenic differentiation. Lasers Surg. Med. 40, 726-733.
Fan, X. L., Y. Zhang, X. Li and Q. L. Fu (2020) Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell. Mol. Life Sci. 77, 2771-2794.
Pricola, K. L., N. Z. Kuhn, H. Haleem-Smith, Y. Song and R. S. Tuan (2009) Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J. Cell. Biochem. 108, 577-588.
Mourkioti, F. and N. Rosenthal (2005) IGF-1, inflammation and stem cells: Interactions during muscle regeneration. Trends Immunol. 26, 535-542.
Haider, K. H. and M. Ashraf (2012) Preconditioning approach in stem cell therapy for the treatment of infarcted heart. Prog. Mol. Biol. Transl. Sci. 111, 323-356.
Kim, K., J. Lee, H. Jang, S. Park, J. Na, J. K. Myung, M. J. Kim, W. S. Jang, S. J. Lee, H. Kim, H. Myung, J. Kang and S. Shim (2019) Photobiomodulation enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy. Int J Mol Sci 20, 1131.
de Freitas, L. F. and M. R. Hamblin (2016) Proposed mechanisms of Photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron 22, 7000417.
Liebert, A., A. Krause, N. Goonetilleke, B. Bicknell and H. Kiat (2017) A role for Photobiomodulation in the prevention of myocardial ischemic reperfusion injury: A systematic review and potential molecular mechanisms. Sci. Rep. 7, 42386.
Karu, T. (2010) Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed. Laser Surg. 28, 159-160.
Karu, T. I., L. V. Pyatibrat and N. I. Afanasyeva (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg. Med. 36, 307-314.
Huang, Y. Y., A. C. Chen, J. D. Carroll and M. R. Hamblin (2009) Biphasic dose response in low level light therapy. Dose-Response 7, 358-383.
Zheng, J., Y. Wen, J. L. Austin and D. B. Chen (2006) Exogenous nitric oxide stimulates cell proliferation via activation of a mitogen-activated protein kinase pathway in ovine fetoplacental artery endothelial cells. Biol. Reprod. 74, 375-382.
Saracino, S., M. Mozzati, G. Martinasso, R. Pol, R. A. Canuto and G. Muzio (2009) Superpulsed laser irradiation increases osteoblast activity via modulation of bone morphogenetic factors. Lasers Surg. Med. 41, 298-304.
Holder, M. J., M. R. Milward, W. M. Palin, M. A. Hadis and P. R. Cooper (2012) Effects of red light-emitting diode irradiation on dental pulp cells. J. Dent. Res. 91, 961-966.
Dehghani Soltani, S., A. Babaee, M. Shojaei, P. Salehinejad, F. Seyedi, M. JalalKamali and S. N. Nematollahi-Mahani (2016) Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells. Lasers Med. Sci. 31, 255-261.
Li, W. T., Y. C. Leu and J. L. Wu (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed. Laser Surg. 28(Suppl 1), S157-S165.
Tuby, H., L. Maltz and U. Oron (2006) Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers Surg. Med. 38, 682-688.
Yépez, V. A., L. S. Kremer, A. Iuso, M. Gusic, R. Kopajtich, E. Koňaříková, A. Nadel, L. Wachutka, H. Prokisch and J. Gagneur (2018) OCR-stats: Robust estimation and statistical testing of mitochondrial respiration activities using seahorse XF analyzer. PloS One 13, e0199938.
Serrage, H. J., S. Joanisse, P. R. Cooper, W. Palin, M. Hadis, O. Darch, A. Philp and M. R. Milward (2019) Differential responses of myoblasts and myotubes to photobiomodulation are associated with mitochondrial number. J. Biophotonics 12, e201800411.
Huang, Y. Y., S. K. Sharma, J. Carroll and M. R. Hamblin (2011) Biphasic dose response in low level light therapy - An update. Dose Response 9, 602-618.
معلومات مُعتمدة: 306385/2020-1 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 2018/06865-7 Fundação de Amparo à Pesquisa do Estado de São Paulo
المشرفين على المادة: 67763-96-6 (Insulin-Like Growth Factor I)
0 (Interleukin-6)
8L70Q75FXE (Adenosine Triphosphate)
تواريخ الأحداث: Date Created: 20230222 Date Completed: 20231127 Latest Revision: 20231127
رمز التحديث: 20240628
DOI: 10.1111/php.13794
PMID: 36807286
قاعدة البيانات: MEDLINE
الوصف
تدمد:1751-1097
DOI:10.1111/php.13794