دورية أكاديمية

Fine cassava fibre utilization as a dietary fibre source for dogs: Effects on kibble characteristics, diet digestibility and palatability, faecal metabolites and microbiota.

التفاصيل البيبلوغرافية
العنوان: Fine cassava fibre utilization as a dietary fibre source for dogs: Effects on kibble characteristics, diet digestibility and palatability, faecal metabolites and microbiota.
المؤلفون: Souza CMM; Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil., Bastos TS; Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil., Kaelle GCB; Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil., Bortolo M; Kemin, Indaiatuba, São Paulo, São Paulo, Brazil., de Oliveira SG; Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil., Félix AP; Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil.
المصدر: Journal of animal physiology and animal nutrition [J Anim Physiol Anim Nutr (Berl)] 2023 May; Vol. 107 Suppl 1, pp. 18-29. Date of Electronic Publication: 2023 Feb 18.
نوع المنشور: Randomized Controlled Trial, Veterinary; Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Country of Publication: Germany NLM ID: 101126979 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-0396 (Electronic) Linking ISSN: 09312439 NLM ISO Abbreviation: J Anim Physiol Anim Nutr (Berl) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Berlin] : Blackwell Science, c2001-
مواضيع طبية MeSH: Manihot* , Microbiota*, Dogs ; Animals ; Digestion ; Diet/veterinary ; Feces/chemistry ; Dietary Fiber/analysis ; Vegetables ; Animal Feed/analysis
مستخلص: The objective was to evaluate through three experiments the effects of a fine cassava fibre (CA: 106 µm) on kibble characteristics, coefficients of total tract apparent digestibility (CTTAD) of macronutrients, diet palatability and faecal metabolites and microbiota of dogs. Dietary treatments consisted of a control diet (CO), without an added fibre source and with 4.3% total dietary fibre (TDF), and a diet with 9.6% CA (106 µm), with 8.4% TDF. Experiment I evaluated the physical characteristics of the kibbles. The palatability test was evaluated in experiment II, which compared the diets CO versus CA. In experiment III, 12 adult dogs were randomly assigned to one of the two dietary treatments for 15 days, totalling six replicates/treatment, to assess the CTTAD of macronutrients; faecal characteristics, faecal metabolites and microbiota. The expansion index, kibble size and friability of diets with CA were higher than the CO (p < 0.05). Additionally, the CA diet presented higher palatability than the CO (p < 0.05) but did not affect CTTAD except for those of fibre (p > 0.05). Moreover, a greater faecal concentration of acetate, butyrate and total short-chain fatty acids (SCFA) and a lower faecal concentration of phenol, indole and isobutyrate were observed in dogs fed the CA diet (p < 0.05). Dogs fed with the CA diet presented a greater bacterial diversity and richness and a greater abundance of genera considered to be beneficial for gut health, such as Blautia, Faecalibacterium and Fusobacterium when compared to the CO group (p < 0.05). The inclusion of 9.6% of a fine CA improves the expansion of kibbles and diet palatability without affecting most of the CTTAD of nutrients. Besides, it improves the production of some SCFA and modulates the faecal microbiota of dogs.
(© 2023 Wiley-VCH GmbH. Published by John Wiley & Sons Ltd.)
References: AAFCO (Association of American Feed Control Officials). (2016). Dog and cat nutrient profiles. Official Publications of the Association of American Feed Control Officials Incorporated. AAFCO.
ABINPET (Brazilian Association of the Pet Products Industry). (2019). Manual pet food Brasil. (10th ed.). Associação Brasileira da Indústria de Produtos para Animais de Estimação.
Alam, S. A., Järvinen, J., Kirjoranta, S., Jouppila, K., Poutanen, K., & Sozer, N. (2014). Influence of particle size reduction on structural and mechanical properties of extruded rye bran. Food and Bioprocess Technology, 7, 2121-2133. https://doi.org/10.1007/s11947-013-1225-2.
Aldrich, G., & Koppel, K. (2015). Pet food palatability evaluation: A review of standard assay techniques and interpretation of results with a primary focus on limitations. Animals: An Open Access Journal from MDPI, 5(1), 43-55. https://doi.org/10.3390/ani5010043.
AlShawaqfeh, M., Wajid, B., Minamoto, Y., Markel, M., Lidbury, J., Steiner, J., Serpedin, E., & Suchodolski, J. (2017). A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiology Ecology, 93, 136. https://doi.org/10.1093/femsec/fix136.
Alvarenga, I. C., Ou, Z., Thiele, S., Alavi, S., & Aldrich, C. G. (2018). Effects of milling sorghum into fractions on yield, nutrient composition, and their performance in extrusion of dog food. Journal of Cereal Science, 82, 121-128. https://doi.org/10.1016/j.jcs.2018.05.013.
Association of the Official Analytical Chemists (AOAC). (1995). Official methods and tentative methods of analysis (16th ed.). AOAC International.
Benevides, L., Burman, S., Martin, R., Robert, V., Thomas, M., Miquel, S., Chain, F., Sokol, H., Bermudez-Humaran, L. G., Morrison, M., Langella, P., Azevedo, V. A., Chatel, J. M., & Soares, S. (2017). New insights into the diversity of the genus Faecalibacterium. Frontiers in Microbiology, 8, 1790. https://doi.org/10.3389/fmicb.2017.01790.
de Brito, C. B. M., Félix, A. P., de Jesus, R. M., de França, M. I., de Oliveira, S. G., Krabbe, E. L., & Maiorka, A. (2010). Digestibility and palatability of dog foods containing different moisture levels, and the inclusion of a mould inhibitor. Animal Feed Science and Technology, 159, 150-155. https://doi.org/10.1016/j.anifeedsci.2010.06.001.
de Brito, C. B. M., Menezes Souza, C. M., Bastos, T. S., Mesa, D., Oliveira, S. G., & Félix, A. P. (2021). Effect of dietary inclusion of dried apple pomace on faecal butyrate concentration and modulation of gut microbiota in dogs. Archives of Animal Nutrition, 75(1), 48-63. https://doi.org/10.1080/1745039X.2020.1867463.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336. https://doi.org/10.1038/nmeth.f.303.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at adepth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108, 4516-4522. https://doi.org/10.1073/pnas.1000080107.
Carciofi, A. C., Takakura, F. S., de-Oliveira, L. D., Teshima, E., Jeremias, J. T., Brunetto, M. A., & Prada, F. (2008). Effects of six carbohydrate sources on dog diet digestibility and post-prandial glucose and insulin response. Journal of Animal Physiology and Animal Nutrition, 92, 326-336. https://doi.org/10.1111/j.1439-0396.2007.00794.x.
Cardoso, A. P., Mirione, E., Ernesto, M., Massaza, F., Cliff, J., Rezaul Haque, M., & Bradbury, J. H. (2005). Processing of cassava roots to remove cyanogens. Journal of Food Composition and Analysis, 18, 451-460. https://doi.org/10.1016/j.jfca.2004.04.002.
Celi, P., Verlhac, V., Pérez Calvo, E., Schmeisser, J., & Kluenter, A. M. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250, 9-31. https://doi.org/10.1016/j.anifeedsci.2018.07.012.
Chen, J., & Vitetta, L. (2018). Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clinical Colorectal Cancer, 17(3), e541-e544. https://doi.org/10.1016/j.clcc.2018.05.001.
Cock, J. H., & Connor, D. J. (2021). Cassava. In V. Sadras, & D. Calderini (Eds.), Crop physiology case histories for major crops (pp. 588-633). Academic Press.
Degnan, P. H., & Ochman, H. (2012). Illumina-based analysis of microbial community diversity. The ISME Journal, 6, 183-194. https://doi.org/10.1038/ismej.2011.74.
Detweiler, K. B., He, F., Mangian, H. F., Davenport, G. M., & De Godoy, M. R. C. (2019). Extruded feline diets formulated with high inclusion of soybean hulls: Effects on apparent total tract macronutrient digestibility, and fecal quality and metabolites. Journal of Animal Science, 97, 1042-1051. https://doi.org/10.1093/jas/skz014.
Donadelli, R. A., & Aldrich, C. G. (2019). The effects on nutrient utilization and stool quality of Beagle dogs fed diets with beet pulp, cellulose, and Miscanthus grass. Journal of Animal Science, 97(10), 4134-4139. https://doi.org/10.1093/jas/skz265.
Donadelli, R. A., Dogan, H., & Aldrich, G. (2021). The effects of fiber source on extrusion parameters and kibble structure of dry dog foods. Animal Feed Science and Technology, 274, 114884. https://doi.org/10.1016/j.anifeedsci.2021.114884.
Eisenhauer, L., Vahjen, W., Dadi, T., Kohn, B., & Zentek, J. (2019). Effects of Brewer's spent grain and carrot pomace on digestibility, fecal microbiota, and fecal and urinary metabolites in dogs fed low-or high-protein diets. Journal of Animal Science, 97(10), 4124-4133. https://doi.org/10.1093/jas/skz264.
Ellison, S., Knapp, R. A., Sparagon, W., Swei, A., & Vredenburg, V. T. (2019). Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Molecular Ecology, 28, 127-140. https://doi.org/10.1111/mec.14964.
FEDIAF (The European Pet Food Industry Federation). (2019). Nutritional guidelines for complete and complementary pet food for cats and dogs. European Pet Food Industry Federation. FEDIAF.
Félix, A. P., Oliveira, S. G., & Maiorka, A. (2010). Fatores que interferem no consumo de alimentos em cães e gatos. In L. Sérgio Vieira (Ed.), Consumo e preferência alimentar dos animais domésticos (Vol. 1, 1st ed., pp. 162-1999). Phytobiotics.
Félix, A. P., Souza, C. M. M., & de Oliveira, S. G. (2022). Biomarkers of gastrointestinal functionality in dogs: A systematic review and meta-analysis. Animal Feed Science and Technology, 283, 115183. https://doi.org/10.1016/j.anifeedsci.2021.115183.
Ganesan, K., Chung, S. K., Vanamala, J., & Xu, B. (2018). Causal relationship between diet-induced gut microbiota changes and diabetes: A novel strategy to transplant Faecalibacterium prausnitzii in preventing diabetes. International Journal of Molecular Sciences, 19(12), 3720. https://doi.org/10.3390/ijms19123720.
Gomez-Arango, L. F., Barrett, H. L., Wilkinson, S. A., Callaway, L. K., McIntyre, H. D., Morrison, M., & Dekker Nitert, M. (2018). Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes, 9(3), 189-201. https://doi.org/10.1080/19490976.2017.1406584.
Jourdian, G. W., Dean, L., & Roseman, S. (1971). The sialic acids. Journal of Biological Chemistry, 246, 430-435.
Kallu, S., Kowalski, R. J., & Ganjyal, G. M. (2017). Impacts of cellulose fiber particle size and starch type on expansion during extrusion processing. Journal of Food Science, 82(7), 1647-1656. https://doi.org/10.1111/1750-3841.13756.
Karkle, E. L., Alavi, S., & Dogan, H. (2012). Cellular architecture and its relationship with mechanical properties in expanded extrudates containing apple pomace. Food Research International, 46, 10-21. https://doi.org/10.1016/j.foodres.2011.11.003.
Karkle, E. L., Keller, L., Dogan, H., & Alavi, S. (2012). Matrix transformation in fiber-added extruded products: Impact of different hydration regimens on texture, microstructure and digestibility. Journal of Food Engineering, 108, 171-182. https://doi.org/10.1016/j.jfoodeng.2011.06.020.
Kröger, S., Vahjen, W., & Zentek, J. (2017). Influence of lignocellulose and low or high levels of sugar beet pulp on nutrient digestibility and the fecal microbiota in dogs. Journal of Animal Science, 95, 1598-1605. https://doi.org/10.2527/jas.2016.0873.
Laflamme, D. P. (1997). Development and validation of a body condition score system for dogs. Canine Practice, 22, 10-15.
Lin, S., Hsieh, F., & Huff, H. E. (1998). Effects of lipids and processing conditions on lipid oxidation of extruded dry pet food during storage. Animal Feed Science and Technology, 71, 283-294. https://doi.org/10.1016/S0377-8401(97)00157-0.
Louis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29-41. https://doi.org/10.1111/1462-2920.13589.
Mader, J. T., & Calhoun, J. (1996). Bone, joint, and necrotizing soft tissue infections. In S. Baron (Ed.), Medical microbiology (4th ed.). Elsevier.
Middelbos, I. S., Vester Boler, B. M., Qu, A., White, B. A., Swanson, K. S., & Fahey, Jr., G. C. (2010). Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One, 5(3), e9768.
Monti, M., Gibson, M., Loureiro, B. A., Sá, F. C., Putarov, T. C., Villaverde, C., Alavi, S., & Carciofi, A. C. (2016). Influence of dietary fiber on macrostructure and processing traits of extruded dog foods. Animal Feed Science and Technology, 220, 93-102. https://doi.org/10.1016/j.anifeedsci.2016.07.009.
Neef, A., & Sanz, Y. (2013). Future for probiotic science in functional food and dietary supplement development. Current Opinion in Clinical Nutrition and Metabolic Care, 16(6), 679-687. https://doi.org/10.1097/MCO.0b013e328365c258.
NRC (National Research Council). (2006). Nutrient requirements of dogs and cats. National Academy Press. https://doi.org/10.17226/10668.
Oliphant, K., & Allen-Vercoe, E. (2019). Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome, 7(1), 91. https://doi.org/10.1186/s40168-019-0704-8.
Pacheco, P. D. G., Baller, M. A., Peres, F. M., Ribeiro, É. M., Putarov, T. C., & Carciofi, A. C. (2021). Citrus pulp and orange fiber as dietary fiber sources for dogs. Animal Feed Science and Technology, 282, 115123. https://doi.org/10.1016/j.anifeedsci.2021.115123.
Panasevich, M. R., Kerr, K. R., Dilger, R. N., Fahey, G. C., Guérin-Deremaux, L., Lynch, G. L., Wils, D., Suchodolski, J. S., Steer, J. M., Dowd, S. E., & Swanson, K. S. (2015). Modulation of the faecal microbiome of healthy adult dogs by inclusion of potato fibre in the diet. British Journal of Nutrition, 113, 125-133. https://doi.org/10.1017/S0007114514003274.
Panasevich, M. R., Rossoni Serao, M. C., De Godoy, M. R. C., Swanson, K. S., Guérin-Deremaux, L., Lynch, G. L., Wils, D., Fahey, Jr., G. C., & Dilger, R. N. (2013). Potato fiber as a dietary fiber source in dog foods. Journal of Animal Science, 91, 5344-5352. https://doi.org/10.2527/jas.2013-6842.
Parks, D. H., Tyson, G. W., Hugenholtz, P., & Beiko, R. G. (2014). STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics, 30, 3123-3124. https://doi.org/10.1093/bioinformatics/btu494.
Paturi, G., Nyanhanda, T., Butts, C. A., Herath, T. D., Monro, J. A., & Ansell, J. (2012). Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat. Journal of Food Science, 77(10), H216-H223. https://doi.org/10.1111/j.1750-3841.2012.02911.x.
Pilla, R., & Suchodolski, J. S. (2020). The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Frontiers in Veterinary Science, 6, 6. https://doi.org/10.3389/fvets.2019.00498.
Prosky, L., Asp, N. G., Schweizer, T. F., DeVries, J. W., & Furda, I. (1988). Determination of insoluble, soluble, and total dietary fiber in foods and food products: Interlaboratory study. Journal of AOAC International, 71, 1017-1023.
Ravi, A., Halstead, F. D., Bamford, A., Casey, A., Thomson, N. M., Van Schaik, W., Snelson, C., Goulden, R., Foster-Nyarko, E., Savva, G. M., Whitehouse, T., Pallen, M. J., & Oppenheim, B. A. (2019). Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microbial Genomics, 5, 5. https://doi.org/10.1099/mgen.0.000293.
Riaz, M. N. (2000). Extruders in food applications. CRC press.
Sabchuk, T. T., Lowndes, F. G., Scheraiber, M., Silva, L. P., Félix, A. P., Maiorka, A., & Oliveira, S. G. (2017). Effect of soya hulls on diet digestibility, palatability, and intestinal gas production in dogs. Animal Feed Science and Technology, 225, 134-142. https://doi.org/10.1016/j.anifeedsci.2017.01.011.
Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L. G., Gratadoux, J. J., Blugeon, S., Bridonneau, C., Furet, J. P., Corthier, G., Grangette, C., Vasquez, N., Pochart, P., Trugnan, G., Thomas, G., Blottière, H. M., Doré, J., Marteau, P., Seksik, P., & Langella, P. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences, 105, 16731-16736. https://doi.org/10.1073/pnas.0804812105.
Souza, C. M. M., Bastos, T. S., Kaelle, G. C. B., Bortolo, M., Vasconcellos, R. S., De Oliveira, S. G., & Félix, A. P. (2021). Comparison of cassava fiber with conventional fiber sources on diet digestibility, fecal characteristics, intestinal fermentation products, and fecal microbiota of dogs. Animal Feed Science and Technology, 281, 115092. https://doi.org/10.1016/j.anifeedsci.2021.115092.
Souza, C. M. M., Bastos, T. S., Kaelle, G. C. B., de Carvalho, P. G. B., Bortolo, M., Oliveira, S. G., & Félix, A. P. (2022). Effects of different levels of cassava fibre and traditional fibre sources on extrusion, kibble characteristics, and palatability of dog diets. Italian Journal of Animal Science, 21(1), 764-770. https://doi.org/10.1080/1828051X.2022.2063078.
Sunvold, G. D., & Corrigan, P. J. (2010). Pet food in the form of a coated kibble. International Publication Number: WO2010138340A1.
Sunvold, G. D., Hussein, H. S., Fahey, Jr., G. C., Merchen, N. R., & Reinhart, G. A. (1995). In vitro fermentation of cellulose, beet pulp, citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, humans, and pigs and ruminal fluid from cattle. Journal of Animal Science, 73(12), 3639-3648.
Swidsinski, A., Ladhoff, A., Pernthaler, A., Swidsinski, S., Loening-Baucke, V., Ortner, M., Weber, J., Hoffmann, U., Schreiber, S., Dietel, M., & Lochs, H. (2002). Mucosal flora in inflammatory bowel disease. Gastroenterology, 122(1), 44-54. https://doi.org/10.1053/gast.2002.30294.
Tolhurst, G., Heffron, H., Lam, Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F., & Gribble, F. M. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes, 61(2), 364-371. https://doi.org/10.2337/db11-1019.
Vinolo, M. A. R., Rodrigues, H. G., Nachbar, R. T., & Curi, R. (2011). Regulation of inflammation by short chain fatty acids. Nutrients, 3(10), 858-876.
Volpe, L. M., Putarov, T. C., Ikuma, C. T., Eugênio, D. A., Ribeiro, P. M., Theodoro, S., Scarpim, L. B., Pacheco, P. D. G., & Carciofi, A. C. (2021). Orange fibre effects on nutrient digestibility, fermentation products in faeces and digesta mean retention time in dogs. Archives of Animal Nutrition, 75, 222-236. https://doi.org/10.1080/1745039X.2021.1925041.
Yilmaz, P., Parfrey, L. W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., & Glöckner, F. O. (2013). The silva and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research, 42, D643-D648. https://doi.org/10.1093/nar/gkt1209.
Zhang, J., Huang, Y. J., Yoon, J. Y., Kemmitt, J., Wright, C., Schneider, K., Sphabmixay, P., Hernandez-Gordillo, V., Holcomb, S. J., Bhushan, B., Rohatgi, G., Benton, K., Carpenter, D., Kester, J. C., Eng, G., Breault, D. T., Yilmaz, O., Taketani, M., Voigt, C. A., … Griffith, L. G. (2021). Primary human colonic mucosal barrier crosstalk with super oxygen-sensitive Faecalibacterium prausnitzii in continuous culture. Med, 2(1), 74-98. https://doi.org/10.1016/j.medj.2020.07.001.
Zhong, X., Zhang, Z., Wang, S., Cao, L., Zhou, L., Sun, A., Zhong, Z., & Nabben, M. (2019). Microbial-driven butyrate regulates jejunal homeostasis in piglets during the weaning stage. Frontiers in Microbiology, 9, 1-18. https://doi.org/10.3389/fmicb.2018.03335.
معلومات مُعتمدة: Kemin (São Paulo, SP, Brazil)
فهرسة مساهمة: Keywords: extrusion; faecal metabolites; fibre source; intestinal functionality; microbial community diversity; short-chain fatty acids; tuber
المشرفين على المادة: 0 (Dietary Fiber)
تواريخ الأحداث: Date Created: 20230222 Date Completed: 20230607 Latest Revision: 20230607
رمز التحديث: 20230607
DOI: 10.1111/jpn.13812
PMID: 36807651
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-0396
DOI:10.1111/jpn.13812